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 Abstract 

From the 1970s onwards, the population of meadow birds in the Netherlands has dramatically 

declined. Disappearance of meadow birds is mainly attributed to agricultural changes; especially the 

shift from extensively managed, herb-rich meadows to intensively managed monocultures of 

ryegrass causes high mortality of juvenile birds. There is a positive correlation between the 

occurrence of stable bird populations and presence of extensive, herb-rich grassland. Remote 

Sensing may contribute to mapping the distribution of extensive meadows to support monitoring of 

meadow bird populations. This thesis assesses the potential of open source high-resolution, multi-

temporal, multi-spectral Sentinel-2A satellite data to detect differences in grassland management 

intensity (fertilizing, mowing, grazing) at parcel level in Friesland, the Netherlands. 

 A rule-based classification method was developed using the Sentinel-2 Red Edge Position 

(S2REP), Normalized Difference Vegetation Index (NDVI) and Mean Absolute Spectral Dynamics 

(MASD) for nine observation dates in 2016. Decision rules were based on thresholds determined by 

See5 univariate decision tree software. Monoculture grassland could reliably be differentiated from 

extensive grassland on both clay and peat soils. After the first mowing date, spectral response shows 

strong overlap. Therefore, availability of springtime imagery, preferably from the second half of April, 

is essential for accurate classification. Good classification results were achieved using a contextual 

rule-based classification approach based on the S2REP and NDVI values for April 21st in combination 

with knowledge on first mowing date. The S2REP was found to be the most important attribute for 

classification (100%) followed by NDVI (50%) whilst the MASD parameter did not contribute to the 

classification. The contextual rule-based classification achieved an overall accuracy of 84.3% and a 

KHAT of 0.65 compared to 82.5% and a KHAT of 0.59 for a statistical rule-based classification based 

on decision rules for four observation dates. 

 According to the contextual rule-based classification for Littenseradiel, Friesland, 31% of the 

total grassland area is classified as extensive vs. 69% as monoculture. 69% of the registered nests of 

Black-tailed godwit, Common redshank, Northern lapwing and Oystercatcher are found on extensive 

grassland vs. 20% on monoculture grassland and 11% on other/arable land.  

 Change in NDVI between two consecutive observation dates can be used to detect first 

mowing dates at parcel level. However, for accurate mowing detection, temporal resolution should 

be 10-15 days. For the 2016 growing season, the gaps between cloud free acquisition dates were too 

large. With the launch of Sentinel-2B, temporal resolution will increase to 5 days. Combining 

Sentinel-2 with Sentinel-1 SAR data may also improve detection of mowing. 
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 1.0 Introduction 

1.1 Grassland management and meadow bird decline 

 

In the municipality Littenseradiel in Friesland, the Northern Netherlands, the landscape has changed 

rapidly over the last two decades. In springtime, one could enjoy colorful grasslands buzzing with 

insects and the sounds of godwits and lapwings. Today, most farmers' fields are without flowers, 

bees, butterflies and meadow birds. This problem does not only occur in Friesland. From the 1970s 

onwards, the population of migratory meadow birds in the entire Netherlands has drastically 

declined (Teunissen et al. 2012). Since 1960, 75% of the breeding population has disappeared 

(Koffijberg et al. 2012). For example, in 1975 there were 120.000 godwit breeding pairs in the 

Netherlands; in 2008 their numbers had decreased to 55.000 (Jensen et al. 2008; Sovon 2017). 

Despite ongoing efforts to protect the meadow birds, their decline seems to speed up during the last 

decade (Teunissen and Plate 2011; Teunissen et al. 2012)(Figure 1.1). Unfortunately, this trend is 

visible throughout Europe (CLO 2015)(Figure 1.2). Loss of meadow birds and decreasing biodiversity 

are important problems and therefore part of the Dutch National Research Agenda (see inset below). 

The Dutch National Research Agenda  Chapter 1: Man, the environment and the economy  
(p. 23) 
 
Question 003: Why is biodiversity important and how do we protect it.  
Sub questions: Why is biodiversity declining so rapidly in the Netherlands, specifically migratory 
birds, insects, amphibians and reptiles and soil organisms. What sustainable solutions are there 
for halting this decline. 

 

                 

 

Figure 1.1:  Decline of four important meadow bird species in the Netherlands from 1990 to 2015 (Index breeding 
population 1990 = 100%)(CLO 2017 (=CBS, Sovon, Netwerk Ecologische Monitoring)). 
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Figure 1.2: Decline of  Farmland Bird Indicator from 1990 to 2014; the Netherlands vs. Europe (Netwerk Ecologische 
Monitoring (Sovon, CBS), European Bird Census Council 2015). 

Grasslands cover 28% of the land surface of the Netherlands (CBS 2016); most of these grasslands 

have an agricultural function, serving as the main source of forage for livestock, nevertheless they 

are also of high nature value as ecological habitat of meadow birds, wild bees, roe deer and other 

animals (Carlier et al. 2009). Changes in agricultural grassland management are high on the list of 

causes of meadow bird decline (CLO 2017; CLO 2015; Groen et al. 2012; Kentie et al. 2013a; Kleijn et 

al. 2010). Dairy farmers strive to maximize productivity through intensification of grassland use (CLO 

2017). Meadows are frequently re-seeded with protein-rich, high produce perennial ryegrass (Lolium 

perenne). Stimulated by the application of high amounts of liquid manure and artificial fertilizer, this 

fast growing grass produces dense swards and fields can be mown for silage production more 

frequent (almost once a month) and earlier in spring, ca. end of April, beginning of May (Groen et al. 

2012; Kleijn et al. 2010; Koffijberg et al. 2012; Verhulst et al. 2008). 

 In this thesis, these intensively managed 'improved' grasslands are referred to as 

monoculture grasslands, emphasizing their uniformity and monotonous appearance (Figure 1.3). The 

term extensive grasslands is used for extensively managed fields that contain various species of 

grasses and herbs. In this context, extensive management means: no application of artificial fertilizer 

or liquid manure and sparingly application of dry manure, grazing by small herds of cattle or sheep 

(usually after the breeding season), first mowing date after June 15th, high groundwater levels and 

presence of foot drains (=narrow ditches within the field). This type of grasslands has become rare 

and is usually only found within nature reserves and at organic farmers.  

 New bird protection schemes, developed from 2012 onwards, focus on so-called meadow 

bird core areas (weidevogel kerngebieden) (Teunissen et al. 2012). Here, suitable environmental 

conditions should be created or preserved to maintain a healthy population. Required  

environmental conditions are: openness of the landscape, large interconnected breeding areas, 

presence of clay- and/or peat soils, high groundwater levels in spring (20-40 cm below surface), a 

delayed first mowing date (not before June 15th), no liquid manure injection and the presence of 

herb-rich grassland (Teunissen et al. 2012; van 't Veer et al. 2008). These conditions are typically 

found in areas with extensively managed grasslands. 

 Conservation efforts are now also aimed at protection of herb-rich grassland. 'Red de rijke 

weide', an initiative of the Dutch Vogelbescherming strives to achieve 200.000 ha herb-rich farmland 
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in 2020; 94 farmers have already joined this initiative (Vogelbescherming 2017). In August 2015, 

LandschappenNL, a partnership of twelve Dutch provincial landscape organizations has pleaded to 

subsidize farmers in order to stimulate development of herb-rich grasslands (LandschappenNL 2015). 

They argue that it is highly desirable to map the distribution of herb-rich meadows. To this date, no 

such dataset is available.  

 Grassland use intensity is spatio-temporally variable, surveying the large area of grasslands 

would be time-consuming and expensive (Franke et al. 2012). Thanks to their ability to gain detailed 

information on large areas at relatively high temporal resolution, Remote Sensing (RS) techniques 

have been increasingly used for nature conservation monitoring. For example, to assess baseline 

habitat condition and extent as well as changes in habitat condition, species diversity and threats 

(Nagendra et al. 2012; Toivonen and Luoto 2003). RS may therefore also be suitable to map the 

presence of herb-rich meadows and support monitoring of meadow bird populations and their 

habitat. A prerequisite for this is that different grassland types can be distinguished and that images 

are available that allow assessment at parcel scale. Currently, just a few examples of this type of 

grassland RS research exist (Asam et al. 2015; Courault et al. 2010; Franke et al. 2012; Sibanda et al. 

2017). This thesis explores the potential of free open source, multi-temporal, high resolution, multi-

spectral Sentinel-2 satellite data for detecting agricultural grassland management intensity and herb-

richness at parcel level in a study area in Friesland, the Netherlands.  

1.2 Research aim & objectives 

 

Main aim of this research is to develop a Remote Sensing-based method that allows to detect 

differences in grass types and grassland use intensity, using free open source satellite imagery and 

free open source GIS software. If extensively managed, herb-rich meadows can be recognized on 

high resolution Sentinel-2 imagery, the method can be used to create distribution maps of herb-rich 

grassland to support monitoring of the Dutch meadow bird populations. If, in the nearby future, 

farmers will be subsidized for creating herb-rich grasslands, the method may also be used to assess 

changes in total area of herb-rich meadows through time and to monitor the effect of the subsidies. 

Because open source data and software is used, the method will also be affordable for non-profit 

nature conservation organizations.  

 To achieve this aim, spectral separability for monoculture and extensive grasslands on both 

clay and peat soils is assessed. Two vegetation index time series are generated and used for rule-

based classification: the Normalized Difference Vegetation Index (NDVI) and the Sentinel-2 Red-Edge 

Position (S2REP), utilizing information from the two Sentinel-2 red-edge bands. Also, the Mean 

Absolute Change Dynamic (MASD) parameter (Franke et al. 2012) is calculated and its usefulness for 

classification of grassland management intensity is investigated. Two related classification methods 

are applied and validated through ground truthing: 1) statistical rule-based classification based on a 

decision-tree (DT) generated using the See5 (C5.0) algorithm, and 2) contextual rule-based 

classification, which uses simplified decision rules derived from the See5 DT  in combination with 

knowledge of local grassland management, specifically the 1st mowing date. To demonstrate its 

potential with regard to meadow bird conservation, the most accurate grassland management map 

will be compared with the distribution of meadow bird nests in the municipality Littenseradiel, 

Friesland. Possibilities for detecting mowing and grazing at parcel level are also examined, since 

these are important aspects in meadow bird conservation (Jensen et al. 2008). Spectral 

heterogeneity will be tested as a proxy for biodiversity, since this parameter may be useful to 

examine differences in herb-richness between monoculture and extensive grasslands, as well as 

variations in herb-richness between extensive grasslands.  
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1.3 Research questions 

 

The overall research question is: 

Can multi-spectral Sentinel-2 satellite imagery be used to differentiate between extensively 

managed, herb-rich grasslands and intensively managed, monoculture grasslands at parcel level in 

Friesland, the Netherlands? 

 

Sub-questions:  

1:  Is there a significant difference between spectral response curves of extensively managed 

grasslands and monoculture grasslands? 

2:  Which Sentinel-2 spectral bands are the most suitable for mapping grassland management 

intensity? 

3:  Is there a significant difference in spectral response for monoculture and extensive grasslands on 

peat soils compared to clay soils? 

4:  What is the optimal time of year to discriminate between extensive and monoculture grasslands? 

5:  Is it necessary to use a combination of images acquired at different times of the growing season to 

achieve accurate classification of grassland management? 

6:  What are the benefits of  the S2REP vegetation index compared to the NDVI? 

7:  Is the Mean Absolute Spectral Dynamic (MASD) parameter useful for classification of grassland 

use intensity? 

8: Which classification method yields the best results in terms of classification accuracy? 

9:  Can spectral heterogeneity be used as an indicator of species richness/biodiversity? 

10: Can mowing and grazing be detected at parcel level? 

11: Based on the results for the current study area, is it possible to map grassland management 

intensity and herb-richness for the entire Netherlands? 

1.4 Thesis outline 

 

Chapter 2.0 contains background information on grassland; general importance of grasslands is 

discussed and the seasonal grass production curve is explained, since this will help to understand 

spectral response curves and NDVI and S2REP time series. A literature review of causes of meadow 

bird decline is presented as well as a literature review on remote sensing of grasslands. Chapter 3.0 

describes the data that were used. It gives background information on the Sentinel-2 mission and the 

capabilities of the Sentinel-2 red-edge bands for vegetation analysis. Data processing steps, such as 

atmospheric correction, are explained. Chapter 4.0 describes the South-Central Friesland study area 

and Littenseradiel and Grouw field survey areas. It contains additional information on local weather 

conditions and a timeline for agricultural grassland management activities for 2016, essential 

background knowledge for interpreting NDVI and S2REP time series. Chapter 5.0 discusses the 

methods that were used. Results can be found in Chapter 6.0, which contains spectral response 

curves, vegetation index time series, MASD maps, classification results and accuracy assessment. In 

Chapter 7.0 potential applications of the grassland management intensity map for meadow bird 

conservation are given. The output map is compared with the distribution of meadow bird nest sites 

in Littenseradiel. Also, a  model for detecting mowing and grazing, is presented and discussed. 

Chapter 8.0 gives the final conclusion/discussion followed by the references in Chapter 9.0. The 

Appendices contain additional maps and tables with results for statistical tests.  
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Extensive grassland at Skrok, Littenseradiel, clay soil area 
(March 3rd 2017). 
 

Monoculture grassland near Easterein, Littenseradiel, clay 
soil area (March 10th 2017). 

  
Extensive grassland at Lionserpolder, Littenseradiel, clay 
soil area (April 17th 2017). 
 

Monoculture grassland near Lionserpolder, Littenseradiel, 
clay soil area (April 17th 2017). 

  
Extensive, herb-rich grassland at De Burd, near Grouw, 
peat soil area (April 22nd 2017). 

Monoculture grassland near De Veenhoop, peat soil area 
(April 22nd 2017). 

 
Figure 1.3: Differences between extensive and monoculture grassland in March and April. 
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 2.0 Background information 

2.1 Grasslands 

2.1.1 Importance of grasslands 

Grasslands cover 31.5% of the global landmass (Ali et al. 2016). Extensive grasslands, e.g. hay 

pastures in Europe, support plant and animal biodiversity and have high nature value (Carlier et al. 

2009; Halabuk et al. 2015). As the second largest terrestrial carbon sink, grasslands are also an 

essential part of the global carbon cycle and grassland use intensity and grassland degradation 

influence greenhouse gas emissions (Ali et al. 2016; Franke et al. 2012). In the Netherlands, 956.000 

ha (28%) of the land surface consists of improved, intensively used agricultural grassland. 90% of this 

grassland is used for the production of silage to feed dairy cattle during wintertime, 3% for 

production of hay, 4% for fresh grass to feed cattle that are kept indoors during the summer and 3% 

is used for other purposes (CBS 2016). It is estimated that grasslands in the Netherlands contain 148 

million tonnes of carbon (Schils 2012). 

 

2.1.2 Grass production curve 

Seasonal grass production curves typically display two peaks (Figure 2.1). Grass growth begins in 

March, speeds up in April and reaches its first, and highest, peak in May. In June and July, growth 

slows down due to slower re-growth after the first (or second) cut but this is also related to the 

flowering season for grass vegetation, ca. half May to half June (Visscher 2010). In August, grass 

growth reaches a second peak. The two-peaked production curve is found for grass species on 

different soil types and in all climates (Alberda 1959).  

 

 
Figure 2.1: Seasonal grass production curve for grass with application of 250 kg N and a grass/clover mixture (from: 

Visscher 2010). 

2.1.3 Factors that influence grass growth 

The five factors that are most important for grass growth are: light, temperature, air (CO2 and O2), 

moisture (rain and soil moisture) and availability of nutrients (nitrogen). Grassland use, e.g. grazing 

or mowing, and management intensity also influence grass production and grass nutritional quality 

(Visscher 2010). Grass, as all plants, uses light as energy source  for photosynthesis; from March 

onwards the amount of daylight is adequate to initiate vegetation growth. Onset of grass growth is 

found at soil temperatures between 5 and 8 °C, measured at a depth of 10 cm below ground surface.  
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In the Netherlands, optimal air temperature for grass growth is between 15 and 25 °C; above 25 °C, 

grass ceases to grow (Gollenbeek and Hoving 2016). Availability of water is also essential for 

photosynthesis. During periods of drought, leaf stomata close, reducing CO2 uptake and reducing leaf 

growth. The natural decrease of grass growth in June/July will be enhanced during dry summers 

(Visscher 2010). Presence of too much moisture, e.g. very wet soils due to high groundwater levels, 

will slow down grass growth because these soils require more time to warm up in spring (Gollenbeek 

and Hoving 2016). In extensive grasslands in spring, water levels are usually higher than on intensive 

grasslands, therefore the onset of grass growth will be delayed. 

 Nitrogen (N) is an important element in chlorophyll and in enzymes required for 

photosynthesis (Clevers and Gitelson 2013). Besides N, other nutrients that are important for 

building proteins are minerals such as phosphorus, sodium, potassium, calcium, molybdenum and 

iron. Local soil type influences the amount of minerals that is available for the grass vegetation. Peat 

soils contain high amounts of organic matter and hence more N than sandy soils (Visscher 2010). Clay 

soils have a high cation exchange capacity which increases soil fertility; the clay minerals attract e.g. 

sodium, potassium, magnesium and calcium (Schils 2012).  

 The amount of available nutrients is regulated by application of fertilizers. General rule of 

thumb is that the more N applied, the higher the grass production (Visscher 2010). Grass growth in 

monoculture meadows is mainly stimulated by application of liquid manure, this is allowed from 

February 15th onwards. European member states allow farmers to apply a maximum of 170 kg N/ha; 

however, in the Netherlands, farmers that own at least 70% grassland are allowed to apply 250 kg 

N/ha (derogation) (Hooijboer et al. 2014). Compared to intensively managed grasslands, grass 

growth in April is much slower on extensive grassland because little or no fertilizer is applied. 

(Visscher 2010). 

 Finally, grass production also depends on grass species. Nowadays, in the Netherlands, 

ryegrass (Lolium perenne) is the most important grass type used for dairy farming. Quality of 

grassland, in terms of nutritional value for dairy cattle, is measured in the amount of ryegrass that is 

present: the more ryegrass the better. Therefore, most intensively managed fields contain 

monocultures of ryegrass. A disadvantage of ryegrass is that it is sensitive to dry and very wet 

conditions. To ensure high production levels, intensively managed meadows are frequently re-

seeded. Mixtures of ryegrass with smooth-meadow grass (Poa pratensis) and clover also occur 

because these are more suitable for grazing. Organic farmers often use mixtures of different grass 

types and clover. Clover acts as a natural fertilizer, it enhances N availability of soils (Visscher 2010). 
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2.2 Meadow birds 

In the Netherlands, the term 'meadow birds' is used for migratory birds that breed on agricultural 

grasslands or arable lands (Groen et al. 2012). This thesis focuses on four meadow bird species, the 

Black-tailed Godwit (Grutto, Limosa l. limosa), the Northern Lapwing (Kievit, Vanellus vanellus), the 

Oystercatcher (Scholekster, Haematopus ostralegus) and the Common Redshank (Tureluur, Tringa 

totanus) and their habitats. The Netherlands have an international conservation responsibility for the 

Godwit because 40% of the European population breeds here (Hooijmeijer et al. 2011; Kleijn et al. 

2010).  

2.2.1 Causes of meadow bird decline 

Over the last 50 years, the population of meadow birds in the Netherlands has dramatically declined 

despite ongoing agri-environmental and other conservation schemes (Kentie et al. 2013a; Teunissen 

and Plate 2011; Teunissen et al. 2012). The most important factors that explain this decline are: 

1) Habitat loss caused by expanse of urban areas and infrastructure, combined with the increase of 

traffic (CLO 2017; CLO 2015; Teunissen and Plate 2011). 

2) Loss of habitat quality due to changes in agricultural management aimed at increased efficiency 

and to maximize productivity of dairy cattle: 

 -  Use of larger and faster tractors for mowing and for manure injection (Teunissen and Plate 2011). 

 -  Intensification of grassland use (CLO 2017; CLO 2015; Groen et al. 2012; Kentie et al. 2013a; Kleijn 

et al. 2010); this causes:  

    - A shift from herb-rich grassland to structurally uniform monocultures of protein-rich, fast growing   

     grass types such as ryegrass (Lolium perenne), which leads to earlier and more frequent mowing  

     (Verhulst et al. 2008). 

    - Increased use of pesticides (CLO 2015) and use of anti-helminthic drugs (avermectins and  

      ivermectins) in cattle and sheep; residues of these drugs excreted in faeces of treated animals are  

      insecticidal, reducing the amount of food for juvenile birds (Vickery et al. 2001). 

    - Increased use of fertilizer and manure injection; earthworm numbers decrease under high  

      fertilizer application rates, reducing the amount of food for adult birds (Vickery et al. 2001). 

    - Removal of (micro) relief through dragging or rolling of meadows (Kleijn et al. 2010). 

    - Higher stocking densities (Kentie et al. 2013a). 

 - A decrease in the total area of grassland caused by a shift from grass to crops, e.g. maize and  

biofuels (Franke et al. 2012; Koffijberg et al. 2012). Between 1950 and 2013 the total area of 

grassland in the Netherlands decreased from 1.317.000 ha to 932.000 ha, although the last few years 

it has slightly increased to 956.000 ha, which is mainly due to increase in temporary grassland (CBS 

2017). 

3) Changes in water management: increased and deeper drainage to maintain low groundwater 

levels (Koffijberg et al. 2012). Foot drains are replaced by underground drainage. Because of drier 

conditions in the fields, farmers can start to inject liquid manure early in spring (Groen et al. 2012).  

4) Climate change, leading to increased winter and spring temperatures; since the 1980s median 

mowing dates have been advanced 15 days due to early warming of soils in spring, whilst hatching of 

e.g. godwit eggs has not advanced. Nowadays more chicks are exposed to agricultural activities 

(Kleijn et al. 2010). 

5) Increased predation pressure; numbers of predators have increased and places where juveniles 

can hide from predators are lacking due to removal of relief, removal of foot drains and early 

mowing (Kentie et al. 2013a). 
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2.2.2 The importance of herb-rich grasslands 

The factors stated above especially contribute to the loss of juvenile meadow birds, which is the main 

reason for population decline (Verhulst et al. 2008). Godwit and redshank chicks cannot survive in 

monoculture grasslands, the juveniles require long (but not too long), herb-rich vegetation that 

contains enough insects for feeding. The dense ryegrass vegetation lacks (large) insects, it also 

inhibits movement of the juveniles and many birds get killed during mowing and manuring (Kentie et 

al. 2013a; Verhulst et al. 2008). Extensively managed grasslands with a high concentration of herbs, 

e.g. dandelions, cuckoo-flowers and buttercups, are required for the survival of juvenile birds (Groen 

et al. 2012; Verhulst et al. 2008). It was found that apparent survival during the first year of life is 2.5 

times higher for godwit chicks that hatched on herb-rich fields than chicks hatched on intensively 

managed, monoculture fields (Kentie et al. 2013a; 2013b). 

 Groen et al. (2012) investigated habitat selection of godwits in South West Friesland. In total 

8480 ha grassland was investigated of which 80% consisted of intensively managed grassland with 

low groundwater levels. It was found that vegetation herb-richness, presence of foot drains and high 

groundwater level are the most important landscape characteristics influencing the quality of  godwit 

habitat. Moist, herb-rich fields with foot drains attracted highest densities of godwits (Groen et al. 

2012). Influence of soil type was also investigated; it was found that adult godwits preferred sandy 

clay loam and sandy clay. Soil texture affects the number of earthworms and penetrability of the soil 

and therefore the availability of earthworms, the most important prey for adult godwits (Groen et al. 

2012).  

 In this thesis a similar definition of herb-richness is used as in the research of Groen et al. 

(2012) and Kentie et al. (2013b). Three categories of herb-richness can be discerned: 

1) Herb-poor: fields dominated by high-productive ryegrass types, 1 to 3 plant species including 

some Dandelions (Paardebloem, Taraxacum species), Nettle (Brandnetel, Urtica dioica) or Stitchwort 

(Muur, Stellaria species), mostly on parcel edges. Intensively used (monoculture) grasslands belong 

to this category. 

2) Moderate herb-rich: high produce grass types but with higher amount of herbs, e.g. Dandelion, 

Stitchwort, Buttercup (Boterbloem, Ranunculus species), Sorrel (Veldzuring, Rumex acetosa), Cuckoo 

flower (Pinksterbloem, Cardamine pratensis) and Daisy (Madeliefje, Bellis perennis). 

3) Herb-rich: meadows with over 10 species of herbs and various grass types e.g. Sweet Vernal Grass 

(Reukgras, Anthaxanthum odoratum), Crested Dog's tail (Kamgras, Cynosurus cristatus) and Tufted 

Grass (Gestreepte Witbol, Holcus lanatus) and beside the herbs of category 2, also other herbs such 

as Ragged Robin (Echte Koekoeksbloem, Silene floscuculi), Yellow Rattle (Kleine Ratelaar, Rhinanthus 

minor), Water Forget-me-not (Moerasvergeet-mij-nietje, Myosotis scorpioides). In the Netherlands, 

this type of fields is usually only found within grassland reserves managed by nature conservation 

organizations. 

The indirect effects of grassland management on meadow birds are summarized in Figure 2.2. 
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Figure 2.2: Diagram of the indirect effects of grassland management on birds (Vickery et al. 2001). 

2.3 Meadow bird conservation in Friesland 

2.3.1 Meadow bird landscapes 

Since 2011, joint meadow bird conservation organizations in Friesland, e.g. 'BoerenNatuur', 'It Fryske 

Gea', Natuurmonumenten and 'Staatsbosbeheer', have focused on conservation of meadow bird 

landscapes, specifically aimed at the protection of godwits. These landscapes should consist of quiet, 

very open, moist to wet grassland areas of at least 250 ha in size with few roads, built-up areas and 

shrubs. They should contain at least 10 godwit pairs per 100 ha (Oosterveld & Hoekema 2012). 

Within meadow bird landscapes, meadow bird core areas can be discerned that should provide a 

safe place for breeding and a suitable habitat for juvenile birds. The intention is that bird populations 

in these areas are able to maintain themselves. Conservation in core areas comprises bird reserves 

and meadows with agricultural nature management; together, these areas form a 'meadow bird 

management mosaic' (Oosterveld & Hoekema 2012). Besides conservation by professional 

organizations, nest protection and protection of chicks is also performed by volunteers, usually 

members of the Bond Friese Vogelwachten (BFVW). The environment that surrounds core areas 

should function as a buffer area between bird reserves and areas with intensive agricultural 

management. To achieve this, in Friesland, also so-called  'Skriezekrites' exist; this may be groups that 

focus on protection of godwits on parcels without agricultural nature management that lie outside 

the reserves. These groups are often joint efforts of various conservation organizations in 

combination with volunteers of BFVW. In other cases it may be groups of farmers, working together 

to protect godwits and other meadow birds on their farmland (e.g. Skriezekrite Idzegea) (Skriezekrite 
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Idzegea 2008). 

 Landscape management in bird reserves is optimized to sustain high numbers of meadow 

birds. In some reserves 30 godwit pairs per 100 ha can be found; birds in these areas form the source 

population (Oosterveld & Hoekema 2012). Bird reserves consist of open herb-rich fields with foot 

drains. Groundwater levels are kept high, dry manure is applied every few years (Figure 2.3) and 

mowing is postponed until at least June 15th. These areas resemble traditional breeding habitats of 

meadow birds (Kentie et al. 2013a). 

2.3.2 Agricultural nature management 

To halt meadow bird decline, several agri-environment schemes for conservation of meadow birds 

have been implemented in the Netherlands since 1981. Agreements within these schemes generally 

prohibit changes in drainage and require protection of nests by mowing around the nests or by 

applying a resting period. In such fields no agricultural activities are allowed between April 1st and 

specific dates in June/July (Kleijn et al. 2004). Unfortunately, research has shown that these schemes 

have not led to an increase in meadow birds (Kleijn et al. 2004). Reason for this may be that the 

number of parcels with agricultural nature management is too small compared to the large area with 

intensive management (Kleijn et al. 2004). It may also be that these parcels lie too close to 

infrastructure and built-up areas or that their soil type and moisture level is not suitable for meadow 

birds (Teunissen et al. 2012). Furthermore, postponed mowing in intensively used fields with high 

produce grass types creates dense swards that inhibit movement of chicks and these fields may also 

not contain enough (large) insects (Kentie et al. 2013a). 

 From 2016 onwards, individual agricultural nature management organizations are required 

to work together as management collectives within the new agri-environment scheme 'Agrarisch 

Natuur en Landschaps Beheer 2016' (ANLb2016) (Melman et al. 2016). In Friesland, seven 

overarching collectives exist that coordinate the nature management activities of ca. 2000 farmers 

that operate within smaller collectives; in total these farmers manage 15.000 ha. The seven 

collectives are united in 'Kollektivenberied Fryslân' (KBF). Farmers take part on a voluntary base but 

are compensated for loss of income (KBF 2017). Before a collective of farmers is allowed to join the 

new scheme, they have to develop a sound management plan. It is hoped that this new, more 

balanced scheme will lead to better results than previous schemes (Melman et al. 2016).  

 

  

Figure 2.3: Dry manure on extensive fields, Skrok, 
Littenseradiel (March 2017). 

Liquid manure injection on monoculture field, Itens, 
Littenseradiel (March 2017). 
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2.4 Remote Sensing of grassland 

2.4.1 Principles of Remote Sensing 

Remote Sensing (RS) can be defined as: "the acquisition of information about an object without being 

in physical contact with it" (Elachi 1987). This broad definition includes acquisition of various data 

types using many different types of sensors. Focus of this thesis is on RS data collected by 

electromagnetic energy sensors operated from the Sentinel-2A satellite. The principle of this form of 

RS is that electromagnetic waves emitted by an energy source, e.g. the sun, interact in different ways 

with earth surface features. The incident energy can be either absorbed, reflected or transmitted 

depending on material type and condition of the features. Also, the proportion of absorbed, 

reflected and transmitted energy varies at different wavelengths. Satellite sensors measure the 

amount of incident energy that is reflected by the earth surface. Spectral reflectance (ρ) is measured 

as a function of the wavelength and is the ratio between the energy at wavelength λ reflected from 

the object and the energy of wavelength λ incident upon the object (Lillesand et al. 2015).  

 

2.4.2 Spectral reflectance of vegetation 

Spectral response of features and objects on the earth surface can be plotted as a function of 

wavelength, creating spectral reflectance curves (Lillesand et al. 2015). Because features respond 

very differently to irradiance, these curves are often called spectral signatures. The difference in 

response makes it possible to distinguish vegetation from e.g. water or built-up areas and to 

recognize different types of vegetation. Figure 2.4 shows the average spectral reflectance curves, 

measured by a spectrometer, for fresh green lawn grass and dry grass (USGS 2017). Satellite-based 

sensors only collect data for parts of the spectrum. This means that some of the information and 

subtle features in the curve will inevitably be lost (Kumar et al. 2001). 

 

 

Figure 2.4: Spectral reflectance curve for dry grass and lawn grass (from: USGS Spectral characteristics viewer; USGS 

2017). 

 

Spectral response curves of vegetation display a very characteristic configuration that depends on: 1) 

the concentration, distribution and type of plant pigments; 2) the internal leaf structure; 3) surface 

roughness of the leafs and 4) water content (Kumar et al. 2001). In the visible light range (~400-700 

nm), vegetation shows low reflectance for violet-blue and red light because chlorophyll pigments in 

plants absorb red light for photosynthesis. Green light is not used for photosynthesis, hence the 

appearance of a small reflectance peak for green visible light. Different types of plant pigments, e.g. 

chlorophyll, carotene and xanthophyll, have their own absorption maxima (Kumar et al. 2001).  
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In senescing vegetation and in stressed plants, chlorophyll pigment degrades; plant color changes 

from green to yellow because carotene and xanthophyll become the dominant pigments, reflecting 

both green and red light. Dead vegetation appears brown because brown pigments, tannins, replace 

carotene and xanthophyll, hence reflectance values in the visible light range increase. This effect can 

be seen in the spectral response curve of dry grass (Figure 2.4). 

 The reflectance red-edge, a steep increase in reflectance, is a characteristic feature of 

spectral response of vegetation that lies between ~690 and 740 nm. The red-edge can be used for 

assessment of biophysical parameters such as leaf chlorophyll content (LCC) and leaf area index (LAI) 

(Frampton et al. 2013; Kumar et al. 2001; Schuster et al. 2012). The amount of chlorophyll per unit 

area is an indicator of plant photosynthesis capacity. The point of maximum slope on the red to 

infrared curve is called the red-edge inflection point. This point is different for different types of 

vegetation. To accurately determine the inflection point, it is required to measure reflectance in a 

high number of very narrow bands (Kumar et al. 2001). An increase in leaf chlorophyll content leads 

to a shift in the red-edge position towards longer wavelengths (Delegido et al. 2013). The point of 

maximum reflectance usually lies at ~800 nm and is called the red-edge shoulder.  

 In the Near Infra Red (NIR) region (~700-1000 nm), reflectance is high because the energy 

levels of NIR are too low to be used for photosynthesis. Variation in spectral response in NIR is 

caused by differences in internal leaf structure and water content (Kumar et al. 2001). In senescing 

vegetation, interior cell walls break down, changing the optical properties of the leaf, which causes a 

decrease in NIR reflectance. Hence, the NIR response for dry grass is lower than for green grass 

(Figure 2.4) (Kumar et al. 2001).  

 The Short Wave Infra Red (SWIR) (~1000-3000 nm) is characterized by water absorption 

bands at ~1200, 1450 and 1940 nm. Lignine, cellulose, starch, proteins and nitrogen are leaf 

biochemicals that also have absorption bands in the SWIR range, but in fresh leaves these are usually 

masked by the presence of water. High water content will decrease reflectance in the water 

absorption bands (Kumar et al. 2001). In the SWIR range between the water absorption bands, 

reflectance of leaves increases during drought (Liew 2001). Dry vegetation contains less water than 

fresh green vegetation and therefore shows less variation in reflectance for the SWIR region; 

reflectance is higher compared to green vegetation (Figure 2.4).  

 Chemical and physical plant characteristics respond to management treatments, e.g. 

application of fertilizer increases chlorophyll content which in turn influences the plants' spectral 

characteristics, making it possible to discriminate between untreated fields and fields that have been 

fertilized (Sibanda et al. 2017; Sibanda et al. 2015).   

 

2.4.3 Remote Sensing of grassland 
 
2.4.3.1 Applications of RS for grassland research 

Because of the large surface area, it is time-consuming and expensive to survey and monitor 

grasslands worldwide using ground-based methods (Ali et al. 2016; Franke et al. 2012). Therefore, 

over the last two decades, RS is increasingly used to study grasslands and their properties, thanks to 

the emergence of advanced techniques in geoinformatics (Gao 2006). Many studies have effectively 

used optical RS data for monitoring, mapping and quantifying different grassland types and 

biophysical parameters (Ali et al. 2016). However, research that uses RS for assessing agricultural 

grassland management intensity at parcel level is rare (Asam et al. 2015; Franke et al. 2012; Sibanda 

et al. 2017). Current availability of high temporal and spatial resolution imagery from e.g. RapidEye 

and Sentinel-2, offers new perspectives for this type of research (Asam et al. 2015). Applications of 

RS for grassland research can be classified into three main groups (Clerici et al. 2012):  
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1) Grassland mapping; usually as a part of global or regional land cover mapping. 

2) Grassland type classification and monitoring; for areas where the location of grasslands is already 

known. 

3) Grassland change analysis; this includes studies of grassland degradation due to overgrazing, 

overgrowth or climate change. 

Since this thesis belongs to the 2nd group, the literature review will focus on the second purpose: RS 

for grassland type classification and monitoring.  

 

2.4.3.2 Time series of vegetation indices 

Characteristics of grassland vary throughout the growing season depending on temperature, soil 

moisture, fertilization and other management activities such as mowing and grazing (See section 

2.1). To get a complete picture of these variations, it is essential to analyze data acquired at different 

observation dates. Within RS there is usually a trade-off between spatial and temporal resolution (Ali 

et al. 2016). Satellites that deliver high-resolution data, tend to have a limited temporal resolution, 

e.g. Landsat 8 (30 m spatial resolution) has a revisit time of 16 days and Sentinel-2A (10 m spatial 

resolution) has a revisit time of 10 days. But, when Sentinel-2B becomes operational, imagery will be 

available every 5 days. In contrary, satellites with high temporal resolution, often have a low spatial 

resolution; e.g. MODIS with a 1 day revisit time, has a maximum spatial resolution of 250 m. 

Unfortunately, 250 m pixel size is too coarse to assess grassland use intensity and management 

practices at parcel level.  

 Most RS-based grassland studies use one or more vegetation indices (VI) to discriminate 

between different grassland types or assess grassland management characteristics. In a VI, 

reflectance values at two or more wavelengths are combined to accentuate specific features of the 

spectral signature for vegetation (Ali et al. 2016). VI's are useful for spatial and temporal inter-

comparison of photosynthetic activity and health condition of vegetation (Huete et al. 2002). The 

most often used VI is the Normalized Difference Vegetation Index, first proposed by Rouse et al. 

(1974); it is the normalized ratio between reflected energy in the red chlorophyll absorption range 

and reflectance in the NIR range, providing an indication of vegetation 'greenness' (Delegido et al. 

2013; Frampton et al. 2013; Lillesand et al. 2015). NDVI time series have shown to be be useful for 

estimating primary grass production; it was found that they provide good estimates for dry green 

biomass and clearly show seasonal changes for vegetation growth and senescence (Nestola et al. 

2016). Therefore, it is likely that the NDVI seasonal curve will be comparable to the grassland 

production curve (Figure 2.1). Drawbacks of the NDVI are that it is susceptible to soil and 

atmospheric influences and that it often saturates for areas with dense vegetation cover (Mutanga 

and Skidmore 2004; Sakowska et al. 2016).  

 The Enhanced Vegetation Index (EVI) has been developed specifically for the Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite sensor. The EVI is also a ratio between 

reflectance in NIR and red visible light, but with additional use of coefficients, such as the canopy 

background adjustment and use of the blue spectral band to correct for aerosol influences in the red 

band (Huete et al. 2002).  

 VI time series can be affected by noise caused by atmospheric variability and cloud 

contamination, as well as bi-directional effects that result from the angular relationship between the 

sun, the object and the sensor (Lillesand et al. 2015; Nitze et al. 2015). To reduce this noise, various 

smoothing techniques/filtering methods have been applied, e.g. curve-fitting functions (Jönson and 

Eklundh 2004). However, small fluctuations in time series can also be attributed to e.g. mowing and 

grazing; by applying a filter, this information may be lost or reduced (Halabuk et al. 2015). 
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For the Netherlands, Lips (2011) has used MODIS 16 and 8 days composite EVI time series to study 

grassland management intensity in the context of meadow bird conservation. It was found that the 

MODIS data did not allow direct classification of intensively and extensively used grassland due to 

noise. However, based on the 16-day EVI time series, a model was developed to detect the 1st 

mowing date for two study areas in Arkenheem-Eemland and Laag-Holland. Mowing causes a sudden 

drop in EVI value that can be detected by studying the EVI change between two consecutive 

observation dates. This model performed well and it was concluded that grassland use intensity can 

be derived indirectly by detecting the 1st mowing date, because extensive grasslands are not mown 

before June. Due to the coarse spatial resolution of MODIS imagery (250 m), grassland management 

could not be detected at parcel level.  

 Halabuk et al. (2015) used MODIS 16 day NDVI and EVI composite time series in combination 

with decision rules derived from a simple decision tree algorithm, to detect grass cutting in hay 

meadows in Slovakia. They found that classification based on NDVI series yielded slightly better 

results than EVI for discriminating between uncut and cut meadows. Also, if noise reduction was 

applied by using Fourier filtering methods, classification accuracy decreased.  

 Courault et al. (2010) successfully detected mowing events and irrigation dates at parcel level 

in the Mediterranean Crau region in France, using NDVI and LAI time series derived from Formosat-2 

imagery (8 m spatial resolution, 4 spectral bands, 3-4 days revisit time). 

 Nitze et al. (2015) used a Feature Importance measure within the Random Forest machine 

learning method (based on Classification And Regression Tree (CART) classifiers) to determine 

optimal image acquisition periods for grassland classification in Ireland. The Feature Importance 

measure represents the contribution of a specific variable/attribute to classification accuracy. In 

Random Forest methods, multiple decision trees are used to improve classification rate. EVI and 

NDVI data derived from MODIS Terra 16-day composites (MOD13Q1) over a 9 year period were used 

to discriminate between improved and semi-improved grasslands. They found that the months April 

and November showed the most optimal separability for both VI's. EVI outperformed NDVI in 

classification accuracy. However, inter-annual variations occurred due to differences in weather 

conditions. Overall classification accuracies varied between 80 and 95% (Nitze et al. 2015). 

 Asam et al. (2015) studied agricultural grassland management intensity in south Bavaria 

using Leaf Area Index (LAI) time series derived from 9 RapidEye images for 2011. The RS based LAI 

was compared with in-situ LAI measurements. Asam et al. (2015) state that grassland biomass is 

better represented by the biophysical parameter LAI  than by other VI's (e.g. NDVI) that are 

developed to assess relative vegetation abundance and vegetation health; LAI is calculated using the 

PROSAIL inverted radiation transfer model in which local viewing and illumination conditions are also 

taken into account. LAI was found to be suitable for discrimination at parcel level between very 

intensively managed fields (that are mown 4 times per year or more), intensively managed fields 

(that are mown 2-3 times), intensively managed pastures (that are alternately grazed and cut) and 

extensively managed meadows and moorland (cut at most once a year). Decision tree software was 

used to derive decision rules based on LAI statistics. E.g. LAI standard deviation was used to 

investigate LAI variability; extensively managed meadows showed low LAI variability because they 

are not frequently mown. Unfortunately, not all mowing events were detected due to gaps in the 

time series.  

 Dussaux et al. (2014) also successfully used LAI, derived from SPOT imagery, to detect 

mowing and grazing in grasslands in France. They found that LAI was a better predictor for these 

activities than NDVI. 
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2.4.3.3 Advantages of using the red-edge spectral bands 

Because grasslands in general display a very similar spectral signature, information from specific 

wavelengths is required to be able to discriminate between different grassland types (Ali et al. 2016). 

Several high-resolution earth observation satellites now collect data in the red-edge wavelengths, 

e.g. RapidEye, WorldView-3 and Sentinel-2. This part of the spectrum is related to vegetation 

chlorophyll content (Clevers and Gitelson 2013; Frampton et al. 2013; Kumar et al. 2001; Schuster et 

al. 2012) and is also suitable for estimating leaf nitrogen content (Clevers and Gitelson 2013; 

Ramoelo et al. 2015). Using red-edge bands reduces the saturation effect which is often found in 

NDVI; in the red-edge region, absorption by chlorophyll is lower than in the red visible light region 

(Clevers and Gitelson 2013; Mutanga and Skidmore 2004). Seasonal variation in chlorophyll content 

was found to be related to gross primary production in maize and soybean crops (Gitelson et al. 

2006). Therefore for grassland, seasonal variability for VI's related to chlorophyll content, such as the 

Sentinel-2 Red-Edge Position (Frampton et al. 2013), may display a similar pattern as the grassland 

production curve (Figure 2.1). 

 As the research of Franke et al. (2012) illustrates (See section 2.4.3.5), RapidEye data with its 

additional red-edge spectral band can be successfully used for classification of grasslands. Schuster et 

al. (2012) have also shown that the inclusion of data from a red-edge spectral band can improve land 

use classification results; they found the RapidEye red-edge band particularly useful for 

discriminating between vegetation classes in open landscapes.  

 Sibanda et al. (2017) used the red-edge band in the commercial WorldView-3 satellite (8 

multispectral bands, 1.24 m spatial resolution, average revisit time < 1 day) to discriminate and map 

complex grassland management treatments in southern Africa. They were able to detect grazing, 

burning, mowing and fertilizer treatment using discriminant analysis (= comparable to Principal 

Component Analysis). Incorporating the red-edge band improved classification accuracy from 65 to 

70%. 

2.4.3.4 Image classification methods 

Image classification procedures are used to automatically categorize each image pixel into separate 

land cover classes or themes. Classification is usually based on spectral patterns, e.g. pixels with 

similar spectral characteristics are grouped together into specific land cover classes (Lillesand et al. 

2015). Classification methods that are used to discriminate between grassland types can be divided 

into statistical, object-oriented and machine learning approaches (including decision-trees), although 

hybrid strategies have also been applied. All methods have been successfully used for different 

regions and using different earth observation satellites. 

 Until the 1990s, maximum likelihood classification was the most often used statistical 

classification method (Ali et al. 2016). The maximum likelihood classifier evaluates variance and 

covariance of spectral response patterns of different land use classes, and classifies pixels based on 

their probability of belonging to a class; the assumption is made that training data follows a normal 

(Gaussian) distribution (Ali et al. 2016; Lillesand et al. 2015). For example, Toivonen and Luoto (2003) 

used supervised classification with the maximum likelihood classifier to detect semi-natural 

grasslands in Finland, using Landsat TM imagery. In general, for grassland studies, overall maximum 

likelihood classification accuracies range from 70-90% (Ali et al. 2016). Drawback of this classification 

method is that Gaussian distribution is required and that it can be computationally slow if a large 

number of spectral channels are used and pixels have to be discriminated into a large number of 

spectral classes (Lillesand et al. 2015).  
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Nowadays, data driven machine learning approaches are more popular than maximum likelihood 

classification. E.g. artificial neural networks are computational models that resemble the structure 

and functions of biological neural networks. Based on input information that flows through the 

network and produces particular outputs, the network itself changes or 'learns' (Lillesand et al. 

2015). Disadvantages are that for this approach, availability of large amounts of data for multiple 

years is required and choice of design of network architecture and choice of assigning learning 

parameter values are not straightforward (Pal and Mather 2003). From 2000 onwards, decision trees 

(DT's) have also been increasingly used for image classification. DT's apply a sequential approach in 

assigning attributes to specific classes. Advantages of  DT's are that they are computationally fast, 

they do not make statistical assumptions concerning frequency distributions and analysts can easily 

interpret their outcome in contrary to neural networks, which are more like a 'black box' (Pal and 

Mather 2003). An example of DT software is See5 (Rulequest Research 2015) (See section 5.5.1). 

Compared to Maximum likelihood classification, DT classification achieved slightly higher overall 

accuracies for multi-spectral data. Accuracies were slightly lower than those achieved by Artificial 

Neural Networks (Pal and Mather 2003). 

  Object-based image analysis combines both spectral and spatial pattern recognition. Spatial 

pattern recognition involves pixel classification based on aspects as image texture, feature size and 

shape, repetition and context. Imagery is segmented into discrete objects before the objects are 

classified. In general, object-based approaches produce classifications that look more smooth than 

per-pixel based methods (Lillesand et al. 2015). Object-based classification was successfully used in 

combination with statistical DT classifiers by Franke et al. (2012) to classify different grassland types 

(See section 2.4.3.5). Also, Brenner et al. (2012) used vector-based image segmentation to map the 

presence of invasive Buffelgrass in Northern America.   

2.4.3.5 Assessing grassland use intensity at parcel level 

The number of studies that assess grassland use intensity and management at parcel level is still very 

limited (Asam et al. 2015; Sibanda et al. 2017). An important example of this type of research is the 

study performed by Franke et al. (2012). Since their work is used as main guide for the methodology 

applied in this thesis, a summary of their methods and results is given in this paragraph. 

 High spatial resolution (5 m), multi-spectral (5 bands: blue, green, red, red-edge, NIR), multi-

temporal imagery (5 observation dates) acquired by the commercial RapidEye satellite was used to 

assess grassland use intensity for a research area in the Bavarian Alps, southern Germany. The 

researchers found that demand for this type of information was very high amongst ecology 

researchers and environmental protection agencies. Intensively used grasslands were defined as 

grasslands that are mown three to six times per year with a first mowing date between mid-April and 

beginning of May; these grasslands contain a low number of vascular plant species. Tilled grasslands 

consist of bare soil at the beginning of the growing season and are often used for producing maize. 

Extensively used grasslands are relatively species rich; the first mowing date is not before the end of 

May/beginning of June. Semi-natural grasslands are often found on wet or very dry sites, they 

contain a high number of species and are not used to produce hay. 

 To study vegetation dynamics, two VI's were calculated for 1500 sample points: the 

Normalized Difference Vegetation Index (NDVI) and the Normalized Red-edge Vegetation Index 

(NREVI), using the red-edge band available in RapidEye imagery. Also, a new indicator for grassland 

use intensity was developed, the Mean Absolute Spectrum Dynamic (MASD), representing spectral 

dynamics of the land surface over time (See section 5.4.2).  
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It was found that in April, extensively used grasslands displayed a wide NDVI range with a median of 

0.6, whilst for intensively used grasslands the NDVI range was narrow with a median of ~0.81. After 

June, NDVI values for both intensive and extensively used grasslands showed the same fluctuation 

pattern that is mainly driven by mowing (Figure 2.5). The MASD parameter was found to be useful 

for identification of grassland use intensity at parcel level, because extensively used grasslands 

display low MASD values whereas intensively used grasslands have high spectral dynamics and 

therefore high MASD values. 

 
 
Figure 2.5: Box plots representing NDVI time series for grasslands with different use intensities. An early observation 
date allows accurate differentiation between intensively and extensively used grassland (from: Franke  et al. 2012). 

Two methods of grassland classification were used. First, a statistical classifier approach in which 

See5 decision tree software was used to generate a DT based on input of NDVI, NREVI and MASD 

values for 5 observation dates for 400 sample points (the training data). The DT can be translated 

into decision rules used for classification of RapidEye satellite imagery. The method was validated 

using the 1100 remaining sample points as test data.  

 The second approach is a context-based classification, incorporating knowledge on seasonal 

aspects of management practices in the study area for which a simple rule set was developed. E.g. it 

is assumed that mowing of grassland causes spectral changes and can therefore be used as an 

indicator of grassland use intensity. Both rule sets were implemented in eCognition, software for 

object-based classification. Combinations of different observation dates were tested. High overall 

accuracies were achieved using all 5 observation dates, with 85.7% for the statistical method and 

82.7% for the context-based approach. Reduction to 3 observation dates led to decrease in overall 

accuracy to 82.2% for the statistical method and 74.8% for the context-based approach. 

 In conclusion, semi-natural grasslands, extensively used grasslands, intensively used 

grasslands and tilled grassland could be reliably distinguished at parcel level, however, influence of 

seasonal aspects should be taken into account for selection of adequate observation dates. Early 

observation is necessary because after the 1st mowing date, intensively and extensively used 

grasslands may reveal similar spectral characteristics. 



30 
 

2.4.4 The Spectral Variation Hypothesis 

The Spectral Variation Hypothesis (SVH), posed by Palmer et al. in 2000, states that spatial variability 

in spectral reflectance, or spectral heterogeneity, is correlated to spatial variation in the environment 

and that objective measures of spectral variability can be used as a proxy for biodiversity (Palmer 

2000; 2002; Rocchini et al. 2007; 2016). If this holds true, than RS can be used to gather information 

on biodiversity at a large scale. Instead of using classification methods to create discrete 

landcover/habitat classes, whereby a lot of information is lost, the original spatial pattern of 

reflectance is used to assess spectral heterogeneity (Palmer 2002). The SVH has been tested by 

various researchers. Gould (2000) calculated the variation in NDVI (using standard deviation), derived 

from Landsat TM imagery, for 17 plots of 0.5 km2 in size with known species richness. Regression 

analysis was performed between measured species richness, NDVI variability and weighted 

vegetation type abundance. It was found that variation in NDVI and weighted abundance of 

vegetation types were significantly correlated to vascular species richness for all study sites.  

 Besides standard deviation of NDVI or the coefficient of variation (CV), various other 

measures of spectral heterogeneity have been proposed and used to predict species richness for 

different types of environments: e.g. variance of spectral response within a (pixel) neighborhood to 

predict woody-plant species richness in tropical dry forests (Gillespie 2005), the mean distance from 

the spectral centroid to predict species richness in the Tallgrass Prairie Preserve in Oklahoma, USA 

(Palmer et al. 2002) and the mean distance from the spectral centroid in a principal component 

space for grasslands in Sweden (Möckel et al. 2016), for savannah vegetation in Central Namibia 

(Oldeland et al. 2010), and Italian wetlands (Rocchini et al. 2007). These measures have been 

successfully used to predict species richness at local scale (Rocchini et al. 2016). However, there are 

some spatial scale related pitfalls in using RS data for species diversity estimation. If imagery with 

high spatial resolution is used (1-5 m), spatial heterogeneity may be contaminated by shadows whilst 

low resolution imagery may not be suitable for detection of fine-grained patterns (Rocchini et al. 

2016). Viedma et al. (2012) investigated species richness and spectral heterogeneity at three scales, 1 

m2, 25 m2 and 100 m2. They found that the strength of the relationship between plant species 

richness and spectral heterogeneity increased with the size of spectral and vegetation sample areas. 

Total species richness could be satisfactory modeled at 100 m2 scale using high spatial resolution 

Quickbird (4 m2) imagery. 

 Scale related pitfalls are also illustrated by the research of Möckel et al. (2016) who tested 

the SVH for assessing species richness in grasslands. They used airborne hyperspectral data (415 -

2345 nm; 1 m spatial resolution) to predict fine scale plant species richness in grazed dry grasslands 

on the island of Öland, Sweden. Plant vascular species were recorded for 104 4x4 m plots and 

compared with a 245-waveband hyperspectral data set. Two modeling approaches to predict within 

plot diversity were used, 1) a spectral response approach, based on reflectance information for all 

bands and 2) a spectral heterogeneity approach based on mean distance to spectral centroid for the 

first five principal components. The spectral response approach successfully predicted species 

richness, but the spectral heterogeneity approach did not. The researchers suspect that the size of 

the plots was too small to establish a relationship between spectral heterogeneity and local plant 

species diversity (Möckel et al. 2016). 

 In conclusion, variability in spectral reflectance may be useful for assessing biodiversity, 

however, it is important to be aware of the influence of spatial and spectral scale and occurrence of 

e.g. shadows that will increase spectral heterogeneity.  



31 
 

 3.0 Data 

3.1 Sentinel-2 satellite data 

3.1.1 The Sentinel-2 mission 

The Sentinel-2 mission is part of six Sentinel missions, developed by ESA for the European Copernicus 

program. Aim of this program is effective environmental monitoring to help respond to the 

challenges of global change; e.g. to monitor land use change, to provide information for risk mapping 

and to support relief efforts in case of natural disasters or other humanitarian crises (ESA 2015a). 

Data acquired by the Sentinel missions will be made available free of charge to users all over the 

world (ESA 2015a).  

 The Sentinel-2 mission consists of two identical polar-orbiting satellites in the same sun-

synchronous orbit phased at 180° to each other at a mean altitude of 786 km. Their revisit time is five 

days at the equator. The orbit inclination is 98.62° and the Mean Local Solar Time (MLST) at the 

descending node is 10:30 (am), similar to the overpass time of LANDSAT and SPOT (Satellite Pour 

l'Observation de la Terre) satellites. The first Sentinel satellite, Sentinel-2A was launched on June 

23rd 2015 and its twin, Sentinel-2B was launched on March 7th 2017 (ESA 2017b). Geographical 

coverage comprises land and coastal areas from 56° South (Isla Hornos, Cape Horn, South America) 

to 83° North (above Greenland). Lifespan of the satellites is 7.25 years (ESA 2015b). The satellites are 

monitored and controlled through the Sentinel Core ground segment, which is also responsible for 

systematically processing, archiving and distribution of Sentinel data and monitoring of data quality; 

actual data is usually available within 3 to 24 hours (ESA 2015b). 

 Sentinel-2A and 2B are designed for multispectral high-resolution imaging of the earth in the 

tradition of NASA's LANDSAT program and the French SPOT missions. Both Sentinel-2 satellites carry 

a passive Multi Spectral Instrument (MSI) that collects sunlight reflected by the earth using a 

pushbroom sensor. The MSI collects data for 13 spectral bands in the Very Near Infra Red (VNIR) and 

Short Wave Infra Red (SWIR) spectra at 10, 20 or 60 m spatial resolution (Figure 3.1; Table 3.1). The 

orbital swath width is 290 km (ESA 2017a). Compared to the LANDSAT missions, the width of 

Sentinel-2 spectral bands is more narrow to reduce the influence of atmospheric constituents, e.g. 

water vapor (ESA 2015b) (Figure 3.1). 

 

 
Figure 3.1: Comparison of LANDSAT 7 and 8 bands with Sentinel-2 (NASA 2017). 
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Table 3.1: Overview of spatial resolution, wavelengths, bandwidths and purposes of the Sentinel-2 Spectral bands (ESA 
2017d; Lillesand et al. 2015). (VIS = visible light; NIR = Near Infrared; SWIR = Shortwave Infrared). 

Spatial 
Res. 
(m) 

Band Nr & Part of 
Spectrum 

Central 
Wave-
length 
(nm) 

Band-
width 
(nm) 

Purpose 

10 2 VIS Blue 490 65 Sensitive to vegetation senescing, carotenoid, browning and 
soil background; atmospheric correction (aerosol scattering). 

3 VIS Green 
 

560 35 Green peak, sensitive to total chlorophyll in vegetation. 

4 VIS Red 
 

665 30 Maximum chlorophyll absorption; calculation of NDVI, S2REP. 

8 NIR 
 

842 115 Vegetation analysis; calculation of Leaf Area Index (LAI),  NDVI. 

20 5 Vegetation Red Edge 705 15 Position of red-edge S2REP; vegetation classification; 
consolidation of atmospheric corrections;  fluorescence 
baseline. 

6 Vegetation Red Edge 740 15 Position of red-edge S2REP; vegetation classification; 
atmospheric correction, retrieval of aerosol load. 

7 Vegetation Red Edge 
 

783 20 Is the edge of the Near-Infrared (NIR) plateau; vegetation 
classification; calculation of Leaf Area Index (LAI), S2REP.  

8a Narrow NIR 865 20 Vegetation classification; NIR plateau, sensitive to total 
chlorophyll, biomass, LAI and protein; water vapor absorption 
reference; retrieval of aerosol load and type; NDWI. 

11 SWIR 1610 90 Assessment of soil moisture/vegetation water content; 
calculation of NDWI (Normalized Difference Water Index). Also 
sensitive to lignin, starch and forest above ground biomass. 
Snow/ice/cloud separation. 

12 SWIR 2190 180 Assessment of Mediterranean vegetation conditions. 
Distinction of clay soils for the monitoring of soil erosion. 
Distinction between live biomass, dead biomass and soil, e.g. 
for burn scars mapping. 

60 1 VIS Blue Aerosol 
 

443 20 Atmospheric correction (aerosol scattering). 

9 Water vapor 
 

945 20 Water vapor absorption, atmospheric correction. 

10 SWIR 
 

1380 30 Detection of thin cirrus for atmospheric correction. 

 

3.1.2 Capabilities of Sentinel-2 for vegetation analysis 

Figure 3.2 shows the spectral response curves for dry grass and lawn grass in combination with the 

Sentinel-2 spectral bands. Noteworthy are bands 5 and 6 in the red-edge part of the spectrum, band 

7 on the NIR edge and bands 8 and 8A on the NIR plateau. E.g. the Landsat 8 mission did not provide 

any reflectance measurements for the red-edge region (Figure 3.1). As explained in Chapter 2.0, the 

red-edge is the prominent increase in reflectance between the red absorption maximum and high 

reflectance in the NIR. The combination of band 5 and 6 therefore offers opportunities for improved 

characterization of the vegetation red-edge. First evaluations of the capabilities of Sentinel-2 for 

quantitative estimation of biophysical variables in vegetation have shown that the Sentinel-2 MSI 

sensor can successfully be used for estimating canopy chlorophyll content, leaf chlorophyll 

concentration and leaf area index (Frampton et al. 2013) as well as nitrogen content (Clevers and 

Gitelson 2013; Ramoelo et al. 2015). A new VI has been developed for Sentinel-2, the Sentinel-2 Red-

edge Position index (S2REP). This VI uses the Sentinel-2 red-edge bands 5 and 6 combined with NIR 

band 7 and red band 4 (Frampton et al. 2013). SWIR band 11 can be used in combination with B8A to 

calculate the Normalized Difference Water Index (NDWI) and assess differences in soil/vegetation 

moisture content (Demonceau 2016). 
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Figure 3.2: Spectral response curves of dry grass and lawn grass vs. distribution of Sentinel-2A spectral bands (USGS 
2017). 

3.1.3 Sentinel-2 data products 

Five different product levels exist: Level-0, Level-1A, Level-1B, Level-1C and Level-2A (Table 3.2). 

Currently, only Level-1C tiles are available for download through the ESA Copernicus Sentinels 

Scientific Data Hub (ESA 2017c). Image data is in JPEG2000 format. The elementary Sentinel-2 MSI 

data products are granules of a fixed size depending on the product level. Granules or tiles for Level-

1C and Level-2A orthorectified products are 100 x 100 km squared ortho-images in the UTM-WGS84 

projected coordinate system (ESA 2015b). Digital Numbers (DNs) for Level-1C images represent top-

of-atmosphere (TOA) reflectance values. The Sentinel Core ground segment systematically processes 

MSI data up to Level-1C (ESA 2015b). Level-2A products can be generated on the user side by 

applying atmospheric correction using the Sen2Cor algorithm (See section 3.2.1)  that can be 

implemented in ESA's Sentinel Application Platform (SNAP) software. This algorithm converts TOA to 

bottom-of-atmosphere (BOA) reflectance values (ESA 2015b). 
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Table 3.2: Sentinel-2 product types (ESA 2015b). 

Sentinel-2 
Product type 

Specification 

Level-0 Compressed raw image data & ancillary data to generate the next level products. Tile size: 25 across track 
x 23 km along track. 

Level-1A Decompressed raw image data; geometric model. Tile size: 25 x 23 km. 

Level-1B Radiometrically corrected imagery in Top-Of-Atmosphere (TOA) radiance values and in sensor geometry 
& refined geometric model which is used to generate the Level-1C product. Radiometric corrections 
applied are: dark signal, pixels response non uniformity, crosstalk correction, defective pixels 
interpolation, high spatial resolution bands restoration (deconvolution plus denoising), binning (spatial 
filtering) for 60 m bands. Tile size: 25 x 23 km. File size: 27 MB. 

Level-1C The Level-1C product results from using a Digital Elevation Model (DEM) to project the image in 
cartographic geometry. Per-pixel radiometric measurements are provided in Top Of Atmosphere (TOA) 
reflectance along with the parameters to transform them into radiance. Level-1C products are resampled 
with a constant Ground Sampling Distance (GSD) of 10, 20 and 60 m depending on the native resolution 
of the different spectral bands. Cloud, Land and Water masks are generated. Tile size: 100 x 100 km. File 
size: 500 MB. 

Level-2A Bottom Of Atmosphere (BOA) corrected reflectance images derived from the associated Level-1C 
products through atmospheric correction. Level-2A products are not systematically generated at the 
ground segment but can be generated by the user through the Sentinel-2 toolbox.  The final product 
includes a scene classification image, aerosol optical thickness map and water vapor map together with 
quality indicators for cloud and snow probabilities at 60 m resolution. Tile size: 100 x 100 km in UTM 
WGS84 cartographic projection. File size: 600 MB. 

 

3.1.4 Overview of used Sentinel-2 Level-1C datasets  

Nine Sentinel-2 (almost) cloud free datasets for South-Central Friesland are available for the growing 

season of 2016 (Table 3.3). These datasets were downloaded using ESA's Scientific Data Hub (ESA 

2017c). The data were unzipped using 7Zip software (Pavlov 2016). The long filenames may cause 

problems when other unzip software is used. The projected coordinate system for all datasets is 

WGS84 / UTM zone 31N EPSG:32631. 

Table 3.3: Overview of available cloud-free Sentinel-2 datasets for the 2016 growing season. Values for solar zenith and 

viewing geometry (Mean view zenith angle and Sun zenith angle) were taken from the pixel that represents Itens, 

Littenseradiel. 

Granules 
 

Acquisition 
Date + Time 

Mean view 
zenith angle  
 

Sun zenith 
angle  

Cloudy 
pixel % 

Degraded 
MSI data % 
 S2A_OPER_MSI_L1C_TL_SGS__20160312T181201

_A003766_T31UFU_N02.01 
12 March  
10:50:37 

3.48° 57.20° 

 

0.0104 0 

S2A_OPER_MSI_L1C_TL_SGS__20160401T163301
_A004052_T31UFU_N02.01 

1 April  
10:50:24 

3.46° 49.21° 

 

22.6475 0 

S2A_OPER_MSI_L1C_TL_SGS__20160411T150737
_A004195_T31UFU_N02.01 

11 April  
10:50:25 

3.47° 45.38° 

 

0 0 

S2A_OPER_MSI_L1C_TL_MPS__20160421T130055
_A004338_T31UFU_N02.01 

21 April  
10:50:29 

3.51° 41.81° 

 

0.8841 0 

S2A_OPER_MSI_L1C_TL_SGS__20160508T163213
_A004581_T31UFU_N02.02 

8 May  
10:40:27 

9.77° 37.05° 

 

0.0032 0 

S2A_OPER_MSI_L1C_TL_SGS__20160607T162830
_A005010_T31UFU_N02.02 

7 June  
10:40:26 

9.80° 31.78° 

 

10.3119 0 

S2A_OPER_MSI_L1C_TL_MTI__20160727T121350
_A005625_T31UFU_N02.04 

20 July  
10:55:47 

3.54° 33.87° 

 

0 0 

S2A_OPER_MSI_L1C_TL_SGS__20160908T161324
_A006340_T31UFU_N02.04 

8 Sept. 
10:54:16 

3.56° 48.36° 

 

0 0 

S2A_OPER_MSI_L1C_TL_SGS__20160925T161027
_A006583_T31UFU_N02.04 

25 Sept. 
10:41:15 

9.88° 54.98° 

 

0 0 

 



35 
 

3.2 Data processing 

 

3.2.1 Atmospheric correction 

To be able to compare Sentinel-2 images from different acquisition dates, sun elevation correction,  

earth-sun distance correction and atmospheric correction are necessary (Lillesand et al. 2015). Sun 

elevation correction accounts for differences in seasonal position (elevation angle) of the sun relative 

to the earth whilst earth-sun distance correction is used to normalize for seasonal changes in earth-

sun distance (Lillesand et al. 2015). The sun elevation angle is complementary to the sun zenith angle 

(Table 3.3). Under extreme view zenith angles, atmospheric path length may vary considerably 

(Lillesand et al. 2015). View zenith angles taken from the pixel overlying Itens, Littenseradiel, vary 

between 3.46 and 9.88 degrees (Table 3.3); these small angles will have little effect on atmospheric 

path length. Also, atmospheric correction compensates for effects of atmospheric scattering and 

absorption and takes into account differences in atmospheric conditions and solar geometry 

(Lillesand 2015). Sun elevation and earth-sun distance corrections are applied by the data provider 

when Level-1C TOA reflectance products are generated (ESA 2017e). Atmospheric correction has to 

be performed by the data user (ESA 2015b). 

 Therefore, the first step in data processing was to run the Sen2Cor (V2.3.0) Level-2A 

processor implemented in SNAP 5.0, at 10 m resolution to generate atmospherically corrected Level-

2A surface BOA reflectance products for all downloaded datasets. Default settings were used for 

Look-up table selection (=rural (continental) aerosol type, mid latitude summer). Figure 3.3 shows 

the Sen2Cor processing steps. The Sen2Cor processor performs atmospheric, terrain (optional DEM) 

and cirrus correction and provides a scene classification image (Mueller-Wilm 2016). The Sen2Cor 

algorithm relies on a database of radiative transfer look-up tables which has been compiled using an 

atmospheric radiative transfer model based on libRadtran1, this is a library for calculation of solar 

and thermal radiation in the Earth's atmosphere (Mueller-Wilm 2016). Look-up tables have been 

generated for different atmospheric conditions, solar geometries and ground elevations (Mueller-

Wilm 2016). The Atmospheric Precorrected Differential Absorption (APDA) algorithm is used to 

retrieve the water vapor content from Level-1C images (Louis et al. 2016). The Aerosol Optical 

Thickness (AOT) is estimated using the Dark Dense Vegetation (DDV) pixel method; this requires that 

the image contains areas of known reflectance behavior, dark dense vegetation or dark soil/water 

bodies (Louis et al. 2016; Mueller-Wilm 2016). Cirrus correction is applied using Sentinel-2 band 10 

(Mueller-Wilm 2016).  

 
 

Figure 3.3: Sen2Cor processing steps (Louis et al. 2016). 
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3.2.2 Creation of data subset 

Using SNAP 5.0, data subsets were created for all Level-2A datasets. These subsets show the South-

Central Friesland study area, including the Littenseradiel and Grouw field survey areas (Figure 3.4). 

The extent ranges from  top: 5700, left: 4507, right: 10067 and bottom: 342 in pixel numbers. This is 

top: 5896610, left: 658263, right: 700613 and bottom: 5854960 in WGS1984_UTM_31N coordinates. 

Creating subsets required resampling of all bands to 10 m resolution.  

 

Figure 3.4: True color composite (B4-B3-B2) of Sentinel-2 image of the South-Central Friesland study area for April 21st 
2016, with the outlines of Littenseradiel and Grouw field survey areas. 

3.3 Ancillary data 

 

Besides Sentinel-2 satellite images, additional data were used and integrated into a Geographic 

Information System (GIS). In Table 3.4 an overview of these datasets is provided. Whilst QGIS 2.18.1 

was used for analysis and classification, ArcGIS 10.3.1 was used to make the maps, since some of the 

datasets were only available through ArcGIS online.  

 Selection of extensive grassland areas was based on the dataset of nature management plans 

(Provincie Fryslân 2016). Selection of clay and peat soil areas was based on the soil map and map of 

landscape types (Provincie Fryslân 2016). The cropland registration dataset for 2016, 'BRP 

Gewaspercelen', was used to create a grassland mask (Nationaal georegister 2017). 

 GIS point data on distribution of meadow bird nests in Littenseradiel for 2016 (except for 

Skrok and Skrins), was provided by the Bond Friese Vogelwachten. This data is gathered by 

volunteers who register the coordinates of each nest using a  mobile phone app (BFVW 2017). For 

Skrok and Skrins, data on the total number of meadow bird territories for 2016 were provided by 
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Natuurmonumenten (De Boer and De Winter 2016). The nest distribution will be compared with the 

grassland management intensity maps. 

 In addition to these datasets, a database of biologic/organic/meadow bird friendly farmers 

was created, based on data from the Red de rijke weide website (Vogelbescherming 2017) and other 

web-based sources, e.g. websites of biological farmshops. From this database a vector point file was 

generated in ArcGIS. The database may not be complete; to my knowledge no publicly available 

official list with addresses of biologic/organic farmers exists.  

 A vector shapefile was created showing the outlines of relevant (meadow) bird reserves 

(Appendix A). This was done in ArcGIS by digitizing boundaries of relevant features of the Dutch 

National Nature Network (EHS), which was available in ArcGIS online (Bodematlas Provincie Fryslân 

2016). The biologic farmers shapefile and the EHS shapefile are used as overlay to further validate 

the grassland management intensity maps. 

 
Table 3.4: Overview of  additional ancillary datasets that have been used.   

Name Source Type Scale/resolution Date Projected 
coordinate 
system 

Soil map (Groundwater levels) 
 
 

Alterra Wageningen Vector 1:50.000 2006 RD New 

Administrative boundaries 
 
 

PDOK Vector Variable, 10 m 
accuracy 

2016 RD New 

Meadow bird reserves 
(beheergebieden/natuurbeheerplan) 

Provinciaal 
georegister 
Provincie Fryslân 

Vector 1:10.000 2016 + 
2017 

RD New 

Registration of croplands 
(BRP-gewaspercelen 2016 definitief)  
 

Nationaal 
georegister 

Vector 1:10.000 2016 RD New 

Soil map  Bodematlas 
Provincie Fryslân 
(ArcGIS Online) 

Vector Variable 2016 RD New 

Dutch Ecological Network/National 
Nature Network 
(Natuurnetwerk Nederland, formerly 
Ecologische Hoofdstructuur (EHS)) 

Bodematlas 
Provincie Fryslân 
(ArcGIS Online) 

Vector Variable 2016  RD New 

Agricultural Nature Management 
Plans (SNL) 
 

Portaal Natuur en 
Landschap 

Vector Variable 2016 RD New 

Nest counts of meadow birds for 
Littenseradiel 
 

Bond Friese 
VogelWachten 

Vector  Variable 2016 RD New 

Territory counts of meadow birds for 
Skrok and Skrins 
 

Natuurmonumenten Paper 
list 

- 2016 - 

MODIS13Q  16 day EVI time series 
 
 

USGS Raster 250 m 2016 Sinusoidal 
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 4.0 Study area 

4.1 Study area: South-Central Friesland 

 

The study area comprises South-Central Friesland, an area of ca. 161.000 ha, in the north of the 

Netherlands (Figure 4.1). It contains (parts of) the municipalities: Fryske Marren, Súdwest Fryslân, 

Heerenveen, Littenseradiel, Harlingen, Leeuwarden, Franekeradeel, Tytsjerksteradiel, Opsterland and 

Smallingerland. The population number for these municipalities is 374.687 in total (December 2016) 

(CBS 2017).  

      
Figure 4.1: South-Central Friesland study area, with Grouw and Littenseradiel field survey areas and the Dutch National 

Nature Network, formerly known as Ecological Network (EHS); See Appendix A for annotated map showing important 

(meadow) bird areas (Provincie Fryslân 2016). 
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The study area contains the region South West Friesland (which lies south-west of Sneek) which was 

designated one of the twenty national landscapes in the Netherlands in 2005 (Schroor 2012). In this 

region a relatively large area of grassland is used for biological farming: 1437 ha in 2014, 4.2% of the 

total surface area of biological grassland in the Netherlands (CBS 2014). Within the study area, there 

are also numerous smaller nature areas and other protected areas that are part of the Dutch Nature 

Network, the former ecological network (EHS) (Appendix A). An important nature area is 'De Alde 

Feanen' National Park near Grouw (See section 4.3). Friesland has a temperate maritime climate with 

an average temperature of 9.6 to 9.9°C and ca. 850 mm rain per year (KNMI 2017). The majority of 

the population lives in the main urban areas: Leeuwarden, Harlingen, Heerenveen, Sneek and 

Lemmer.  Small villages and hamlets are scattered throughout the area. 

  Land cover is dominated by grassland, used for sheep- and cattle farming. Near Harlingen 

and Franeker, areas with arable land dominate. In Gaasterland and near St. Nicolaasga, some forest 

cover exists (Provincie Fryslân 2016). A large area of South West Friesland consists of lakes that are 

interconnected through canals.  

 To study the influence of soil type on spectral reflectance values, two field survey areas were 

chosen within the study area: Littenseradiel, representing an area with clay soils and Grouw, an area 

dominated by peat soils (Figure 4.2). 

 

 

Figure 4.2: Soil map of South-Central Friesland showing the Littenseradiel (clay soils) and Grouw (peat soils) field survey 
areas (Provincie Fryslân 2017). 
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Elevation 

In rugged areas, topographic (illumination) effects may influence spectral response (Moreira et al. 

2016). In South-Central Friesland this will not cause any problems because the landscape is relatively 

flat; elevation ranges from 3.0 m below mean sea level in polder areas, to 12.7 m above mean sea 

level on the highest push moraines in Gaasterland (Schroor 2012)(Figure 4.3). Nature areas, including 

areas with extensive grassland management, are often found in the lower parts of the study area. 

Here, groundwater levels are usually higher (See Figure 4.9). 

 
Figure 4.3: Elevation map of study area. AHN3 50x50cm resolution (Provincie Fryslân 2017). 
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4.2 Field survey area Littenseradiel 

The field survey area for clay soils consists of the municipality Littenseradiel (13.200 ha) in the center 

of  Friesland (Figure 4.4). This region was chosen because it is one of the core areas for meadow 

birds. Another reason for choosing this municipality is the author's knowledge of this area, which is 

important when validating results of Remote Sensing (ground truthing). Compared to other parts of 

the Netherlands, Littenseradiel is relatively sparsely populated with a population of 10.740 people 

(December 2016) (CBS 2017b). Littenseradiel contains three large bird reserves that will be used as 

areas representing extensively managed grassland: Skrok, Skrins and Lionserpolder (Figure 4.4). The 

landscape in the field survey area is very open and almost completely covered by grasslands, 10.900 

ha in total, mostly used for cattle farming. Of this area, only 3700 ha is occupied by grassland used 

for biological farming (CBS 2014). Average parcel size in Littenseradiel is 2.4 ha. 

 An important trend here, as well as in the rest of the Netherlands, is that smaller farms 

disappear and only a few large intensive farms remain with growing numbers of milking cows (CBS 

2016). With this development, grassland use has intensified as well. Many farmers have switched to 

growing high produce, protein-rich ryegrass types and maize and have installed underground 

drainage systems to replace foot drains (Groen et al. 2012). In 2014, there were eight registered 

organic/biodynamic farms in Littenseradiel (CBS 2014).  

 
Figure 4.4: Nature management plan 2016 and topography for Littenseradiel (Provincie Fryslân 2016). 

 

Skrok, Skrins and Lionserpolder 

The meadow bird reserves, Skrok (105 ha), Skrins (99 ha) and 102 ha of the Lionserpolder (337 ha) 

are managed by the Dutch association Natuurmonumenten. All three reserves are part of the Dutch 

National Nature Network. Natuurmonumenten bought their first parcels in Skrok and Skrins in 1983; 

development of the Lionserpolder started in 1991 (De Boer et al. 2006). These reserves belong to the 

best meadow bird areas of Friesland; every spring, large numbers of meadow birds use these areas 

for breeding (Oosterveld & Hoekema 2012). The reserves are not only important for meadow birds, 

but have high value in terms of cultural history as well. Here, the characteristic allotment structure is 
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preserved with its irregular parcel shapes and alternating pattern of foot drains and convex strips of 

grass (De Boer et al. 2006). Traces of the Middelzee delta (from ca. 1500-1200 BC) can still be seen in 

the landscape. The presence of saline seepage in Skrins and Lionserpolder is a reminder of the time 

when this area was flooded by the Middelzee. Plant species that tolerate salty soils can be found 

here (De Boer et al. 2006).  

 Traditional agricultural methods are used for managing the grasslands. Natuurmonumenten 

contracts local farmers who can use the parcels for grazing (after May 1st) and production of hay 

(after June 15th). Alternating between grazing and mowing leads to variation in grassland structure. 

Every three to four years, dry goat manure is spread out on the parcels. Manure injection or artificial 

fertilizers are not allowed. Reeds, shrubs and unwanted plants, such as Curly Dock (Rumex crispus, 

Krulzuring), are removed to prevent settling of predators. Within all reserves, small ponds have been 

created that attract large numbers of migratory birds. Groundwater levels are kept high to preserve 

water in the ditches and foot drains (De Boer et al. 2006). Optimal groundwater level for godwits lies 

between 20 to 40 cm below ground level in spring and should not be deeper than 60 cm below 

ground level in summer (Oosterveld & Hoekema 2012). 

 According to the nature management plan, moist meadow bird grasslands (N13.01) are 

found in Skrok, Skrins and Lionserpolder (Figure 4.4). This category comprises wet and moist 

grasslands with slightly acid to neutral pH and may contain both herb-rich and nutrient rich ryegrass 

pastures (OBN 2015). However, grassland type in the three reserves is predominantly extensive, 

herb-rich grassland with Crested Dog's tail (Cynosurus cristatus, Kamgras) and Sweet Vernal grass 

(Anthaxanthum odoratum, Reukgras) (De Boer et al. 2006). 

Agricultural Nature Management in Littenseradiel 

Within Littenseradiel, agricultural nature management is organized by four collectives that fall within 

one of the seven collectives of Kollektivenberied Fryslân. Unfortunately, only data for individual 

management packages was available. The dominant management package is nest protection (Figure 

4.5). In some parcels, resting periods are applied and there are a few herb-rich parcels. Recently, 

more moist 'plas-dras' areas have been created (Figure 4.6).  

Skriezekrite rûnom Skrok en Skrins 
 'Skriezekrite rûnom Skrok en Skrins' was a group that focused on protection of godwits in the area 

surrounding the Skrok and Skrins meadow bird reserves. Unfortunately, in 2017 the group ceased to 

exist. It was a joint effort of Natuurmonumenten, wildlife management group 'de Alde Slachte', local 

groups of the Bond Friese Vogelwachten (BFVW) and Murk Nijdam. Nijdam is a farmer with 42 ha of 

land in the 'Súdhoeke' near Wommels (See Figure 4.4), who has successfully adapted his 

management to optimize godwit breeding success. The Skriezekrite tried to stimulate farmers to 

complete their 1st cuts early in spring, well before godwit chicks have hatched, and to delay further 

mowing activity until after June 15th. Aim of this measure is to prevent death of chicks that wander 

from the 'safe' reserves into nearby intensively managed fields (Heitman et al. 2015). 
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Figure 4.5: Agricultural Nature Management organizations and individual management packages for Littenseradiel 2016 

(Portaal Natuur en Landschap 2016). 

 

 

Figure 4.6: New  'plas-dras' (shallow pond) on extensive grassland near Itens, Littenseradiel (March 2017). 
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Biodiversity 

The 'Nationale databank flora en fauna' was consulted to acquire data on biodiversity for two 1 km2 

squares in Littenseradiel: Monoculture area: 169-571 (Bonkwerd); extensive area: 175-573 

(Lionserpolder) (Figure 4.7). The table reveals that biodiversity of vascular plants (vaatplanten) and 

number of breeding birds (broedvogels) is higher for extensive than for monoculture grasslands in 

Littenseradiel (Nationale databank Flora en Fauna 2017). However, it should be noted that 

completeness of the species counts is rated as 'bad' (slecht) for most categories. 

 

Figure 4.7: Biodiversity for monoculture and extensive area in Littenseradiel (Nationale databank Flora & Fauna 2017). 
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4.3 Field survey area Grouw 

The field survey area for peat soils is situated in a low-lying peat area of about 10.200 ha in Central 

Friesland, 'It Lege Midden' near the village Grouw (Figure 4.8). It contains part of the 'De Alde 

Feanen' National Park with several important meadow bird areas, e.g. 'De Burd' and the 'Wyldlannen' 

(Fûgelwacht Grouw 2015a; 2015b). The area consists mainly of small lakes, grasslands used for sheep 

and cattle farming and natural marshlands. Average parcel size is 2.5 ha. Local soil type is dominated 

by peat soils, but in the most western part of the field survey area including the western tip of De 

Burd, clay soils are also present (Figure 4.2). Ground cores for the clay soils on the western part of De 

Burd reveal that a thin layer of clay (ca. 40 cm), which is very rich in humus, lies on top of a thick peat 

layer (ca. 210 cm); peat layers on the eastern part of De Burd are not covered with clay (Dinoloket 

2017). Peat was extracted in De Alde Feanen in the 18th and 19th century, creating a maze of small 

lakes and ditches interspersed with reedlands and marshes. Parts of the National Park have been 

protected nature areas since 1934 (De Vries 2017). 

 
Figure 4.8:  Nature management plan 2016 for Grouw area (Provincie Fryslân 2016). 

De Burd and Wyldlannen 

De Burd is an island to the east of the village Grouw (Figure 4.8). On the southern part of the island 

numerous holiday homes have been built; the rest of the island consists of grasslands protected by 'It 

Fryske Gea', a Friesian nature conservation organization. Within the grasslands, moist areas 'plas-

dras' have been created to attract meadow birds (Fûgelwacht Grouw 2015a). According to the nature 

management plan, grassland types consist of moist meadow bird grassland (N13.01), similar to the 

type found in Littenseradiel, and also herb-rich grassland (N12.02)(Provincie Fryslân 2017). 

Vegetation in these herb-rich grasslands can belong to different grassland types, e.g. Crested Dog's 

tail (Cynosurus cristatus, Kamgras) and Tufted grass (Holcus lanatus, Gestreepte Witbol). These 

grasslands are often used for production of hay and extensive grazing. Little to no manure or 

fertilizer is applied (OBN 2015).  
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The Wyldlannen area, also owned by It Fryske Gea, is used as resting place by godwits that return to 

their breeding grounds in early spring. It is a former marshland area that has been drained in the 

20th century. During the winter the meadows are inundated (Fûgelwacht Grouw 2015b). 

 

Agricultural Nature management 

In the Grouw area there are at least seven biological/organic/meadow bird friendly farmers, of which 

six are situated close to the village Aldeboarn. In this area, five agricultural nature organizations 

successfully work together in the cooperation 'It Lege Midden'. They focus on protection of meadow 

birds and conservation of herb-rich grasslands (KBF 2017). 

4.4  Groundwater levels 

Besides a difference in soil type, differences in soil moisture may exist for Littenseradiel and Grouw. 

In the low-lying peat area near Grouw, groundwater levels are usually higher than in Littenseradiel 

(Figure 4.9). High groundwater levels in springtime slow down grass growth (See section 2.1.3). Soil 

moisture content also directly influences spectral response. E.g. for bare soils, higher soil moisture 

content results in decreased reflectance in the visible and NIR regions (Jensen 2007). In the field 

survey areas, presence of vegetation cover will partly compensate for this effect, but this depends on 

vegetation density. Also, the clay soils in Littenseradiel have a good capacity of retaining rain water, 

further reducing differences in soil moisture between clay and peat soils.    

 
Figure 4.9: Average groundwater levels in Littenseradiel and Grouw (Alterra 2006). 
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4.5 Local weather and timeline of agricultural activities in 2016 

The growing speed of grass is strongly dependent on temperature and precipitation (See section 2.1). 

These factors will also influence NDVI and S2REP vegetation index time series, causing e.g.  seasonal 

fluctuations. To be able to interpret the vegetation index time series it is essential to have knowledge 

of the local climate. Therefore, a summary of the weather conditions for Friesland in 2016 is given 

here in combination with the timeline of agricultural activities. 

 Compared to other years, January 2016 was relatively mild (Table 4.1). It was also a wet 

month with more precipitation than usual (Figure 4.11)(KNMI 2016a). February was also mild and 

wet but with more sunshine than usual. From the second half of February onwards, farmers started 

with manure injection, continuing with spreading artificial fertilizer and  dragging of pastures until 

the end of March (Hoekstra 2017). March was a lot colder than usual and overall quite dry and sunny 

but with some very wet days in the beginning and towards the end of the month. April was cold as 

well, more than 1°C colder than usual, especially during the second half of the month (Figure 4.10). 

During the first half of the month, there were some warmer days. April was also very wet but from 

April 18th onwards, there was a short dry period, during which a few farmers already mowed some 

of their parcels. Despite the rain, April saw more hours of sunshine than usual. Farmers let their cows 

out to pasture at the end of April, beginning of May (Hoekstra 2017). 

 May was very warm, sunny and dry, with less precipitation than normal (Figure 4.10). 

Between May 6th and May 12th, day temperatures reached ca. 25 °C and the nights were also warm. 

For farmers, this was an excellent opportunity for the first silage harvest. Overall, June was wet and 

cloudy but with normal temperatures. Many pastures were mown for the 2nd time in the first weeks 

of June (Hoekstra 2017). July was dry, quite sunny and warm, especially during the second half of the 

month; between July 18th and July 21st temperatures reached 28-30 °C, a good opportunity for 

farmers to mow extensive pastures and to produce hay. The first half of August was cooler than 

normal, but the second half was relatively warm and dry with some very hot days between August 

24th and 27th. The amount of precipitation varied strongly per region. September was much warmer 

than usual and also quite dry. Especially during the first half of the month, temperatures reached  

25 °C and higher. After September 19th, temperatures dropped, especially during the night. The first 

half of September was also a good period to mow both intensive and extensive pastures. Warm 

conditions in the fall led to continuation of mowing until late October. 

 

 

Figure 4.10: Temperatures in April and May 2016 for the KNMI weather station in Leeuwarden (Weerstation Hallum 
2016). 
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Table 4.1: Average temperature per month (°C) (KNMI weather station Leeuwarden). 
 

Month Normal 2015 2016 

January 3.1 3.9 3.3 

February 3.3 3.2 4.2 

March 6.2 5.8 4.8 

April 9.2 7.6 7.8 

May 13.1 11.1 13.7 

June 15.6 14.0 15.6 

July 17.9 17.4 17.5 

August 17.5 18.0 17.2 

September 14.5 13.3 17.5 

 

 

 

 
Figure 4.11: Graphs showing average daily temperature, amount of precipitation and sun hours per week (starting at 

January 4th) for 2016 for the KNMI weather station in Leeuwarden. 
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 5.0 Methods 

5.1 Methods workflow 

Figure 5.1 summarizes the methodology that was used for this research. Data collection and 

preparation were already discussed in Chapter 3.0. Field survey methods, data analysis, classification 

and accuracy assessment will be explained in the next paragraphs. 

 

Figure 5.1: Methods workflow. 

5.2 Field survey & ground truthing 

In October 2016 a field survey was performed by bicycle to roughly identify grassland management 

at parcel level. Based on this survey, areas with monoculture grassland were selected (Figures 5.2 

and 5.3). Known bird reserves, derived from maps of nature management plans (Provincie Fryslân 

2016), were chosen to represent areas with extensive management and herb-rich grass. Parcel 

geometry for grasslands was extracted from the 2016 cropland registration dataset (Nationaal 

georegister 2017). Surface areas of  both grassland categories  are comparable (Table 5.1). The field 

survey was repeated thoroughly in the second half of April 2017 when differences in grassland 

management intensity are most pronounced, thanks to the presence of flowering herbs. Grassland in 

Littenseradiel was inspected by bicycle and on foot. To achieve ground truthing for areas that could 

not be reached, high resolution Google Earth imagery from May 7th 2016 was used. Traces of liquid 

manure injection, characteristic for monoculture grasslands, are visible on these images. Presence of 

foot drains is also visible, these are characteristic for extensive grasslands (Groen et al. 2012). A 

vector map showing the distribution of grassland type for each parcel was created for the whole of 

Littenseradiel. This map has been used for accuracy assessment. Discrepancies in the ground truth 

data may arise because the Sentinel-2 satellite imagery dates from 2016 and the field survey was 

performed in 2017. E.g. re-seeding of grassland may lead to misclassification.  
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Table 5.1: Surface area of selected sample parcels for monoculture and extensive grassland. 

Littenseradiel Size (m
2
) Nr. of parcels 

Monoculture 4830310 153 

Extensive (Bird reserves) 4825080 231 

Grouw Size (m
2
) Nr. of parcels 

Monoculture 5223500 250 

Extensive (Bird reserves) 5307690 161 

 

 
Figure 5.2: True color composite (RGB = B4-B3-B2) of Littenseradiel field survey area on April 21st, 2016, showing the 
outlines of the extensive and monoculture sample areas (Data source: ESA Sentinel-2). 
 

 
Figure 5.3: True color composite (RGB = B4-B3-B2) of Grouw field survey area on April 21st, 2016, showing the outlines of 
the extensive and monoculture sample areas (Data source: ESA Sentinel-2). 
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5.3 Sample points 

Using QGIS Desktop 2.18.1 with GRASS 7.0.5, 400 random sample points were created within the 

polygons of extensive grassland for clay soils (Littenseradiel) and peat soils (Grouw). Because 

Sentinel-2 images have a spatial resolution of 10 m for bands 2, 3, 4 and 8, a distance of at least 10 m  

was chosen between the sample points to avoid duplicate samples. The same procedure was applied 

for polygons of monoculture grassland. All 1600 sample points were imported into SNAP as ESRI 

shapefiles and used as mask to extract reflectance, NDVI and S2REP values for these points for the 

whole time series which comprises nine observation dates. Data were saved as a tab delimited text 

file that could be analyzed in Microsoft Excel. In Excel, sample points affected by cirrus clouds were 

excluded, this was only necessary for the dataset of June 7th.  

5.4 Spectral separability 

Spectral separability of extensive and monoculture grassland and differences between clay and peat 

soils were assessed by analyzing spectral reflectance curves based on mean reflectance values. Also, 

coincident spectral plots were created (Lillesand et al. 2015). Based on analysis of the spectral 

response curves (Figure 6.1), it was decided to use the NDVI and the S2REP to discriminate between 

the four grassland categories. The Mean Absolute Spectral Dynamics (MASD) (Franke et al. 2012), 

was added to test its usefulness for grassland classification. NDVI and S2REP vegetation indices and 

MASD were calculated using SNAP 5.0. 

 

5.4.1 Vegetation indices 

 

NDVI 

The Normalized Difference Vegetation Index, based on the difference of reflectance in NIR and red 

spectral bands, was first proposed by Rouse et al. (1974) to identify areas with vegetation. Vegetated 

areas will yield high NDVI values because vegetation reflects NIR light and chlorophyll absorbs red 

light. The index has been used in countless studies for vegetation monitoring and assessment 

(Lillesand et al. 2015; Frampton et al. 2013). 

 NDVI was calculated for all nine images of the 2016 time series using the NDVI processor in 

the thematic land processing tools in SNAP 5.0. Sentinel-2 bands 4 (red) and 8 (NIR) were used for 

the NDVI calculation as advised by ESA in the Sentinel-2 technical guide (ESA 2017f).   

NDVI Formula:  

 
 

S2REP 

The Sentinel-2 Red-edge Position (S2REP) vegetation index can be used as an indicator for chlorophyll 

content (Frampton et al. 2013). S2REP was calculated using the S2REP processor in the thematic land 

processing tools in SNAP 5.0. It uses the Sentinel-2 red-edge bands 5 and 6, combined with band 7, 

the edge of the NIR plateau and band 4, the red band. The S2REP results from the following (sensor-

dependent) equation (Frampton et al. 2013): 
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Translated into Sentinel-2 bands, the formula is: 705 + 35 * ((((B7 + B4)/2) - B5) / (B6 - B5)). 

The formula is based on the calculation of the red-edge inflection point developed by Guyot and 

Baret (1988). In this method it is assumed that the reflectance curve at the red-edge can be 

simplified into a straight line which is centered around a midpoint between the reflectance minimum 

(= maximum chlorophyll absorption) located  at 665 nm (B4) and the NIR reflectance at 783 nm (B7) 

on the edge of the NIR plateau (Table 3.1). Reflectance measurements in B7 and B4 are used to 

estimate reflectance for the red-edge inflection point. A linear interpolation procedure is then 

applied between 705 nm (B5) and 740 nm (B6) to establish the inflection point wavelength, or Red-

edge Position (REP). The constants 705 and 35 are derived from interpolation in the 705 and 740 nm 

interval (Cho et al. 2008). 740 nm is the maximum value for the Red-Edge Position; the S2REP range 

for vegetated areas lies between 690 and 740 (ESA Step Forum 2017). Values outside this range were 

removed as outliers. 

 Besides atmospheric correction, smoothing of NDVI and S2REP time series through applying 

e.g. filtering methods was not applied because of the risk of loss of small fluctuations which may 

represent grazing or mowing (Halabuk et al. 2015). 

5.4.2 Mean Absolute Spectral Dynamic 

The Mean Absolute Spectral Dynamic (MASD) is an indicator of spectral variability for each pixel over 

two or more observation dates. It represents vegetation dynamics throughout the growing season 

and can be used as an indicator for grassland use intensity (Franke et al. 2012). The MASD parameter 

is calculated as follows: 

 
Here, m is the number of observation dates, t is the observation date, n is the number of spectral 

bands, b is the spectral band, and ρ is the pixel reflectance (Franke et al. 2012). If the MASD is 

calculated for two observation dates, it gives the mean absolute change between these dates. It 

should be noted that MASD only describes the magnitude of the spectral response and does not give 

any information on the spectral shape. 

 MASD was calculated using Raster Band math in SNAP 5.0. MASD4_spring is based on the 

images for April 1st, April 11th, April 21st and May 8th, indicating spectral variability before the 1st 

mowing date of extensive grasslands. MASD7_total (April-September) also includes July 20th, 

September 8th and September 25th to assess spectral variability during the entire growing season. 

March 12th and June 7th were excluded because of presence of clouds. Also, MASD between 

subsequent observation dates was calculated. 

 

5.4.3 Statistical tests 

All statistical tests were performed using XLSTAT implemented in Microsoft Excel (Addinsoft 2015a). 

Data were tested for normality using the Shapiro-Wilk test. Mean values for NDVI, S2REP, MASD and 

reflectance for monoculture and extensive grasslands on peat and clay soils and values for peat vs. 

clay soils were compared using the Mann-Whitney U test. This non-parametric test can be used to 

compare independent samples if data is not normally distributed; the test determines whether 

samples can be considered identical or not, based on their ranks (Addinsoft 2015b). The non-

parametric Kolmogorov-Smirnov test was used to compare distributions for NDVI, S2REP, MASD and 

reflectance values for all nine observation dates (Addinsoft 2015c).  
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5.4.4 Spectral heterogeneity 

According to the Spectral Variation Hypothesis (SVH), spatial variation in reflectance is correlated to 

spatial variation in the environment and species richness (Palmer 2000; 2002). Therefore, in herb-rich 

grasslands with a high variety in species, higher spectral heterogeneity is expected. To assess spectral 

variability for extensive and monoculture grasslands, variance in reflectance was calculated for all 

sample points.  

 Spectral heterogeneity within grassland parcels was assessed based on the calculation of the 

mean distance to the spectral centroid (Rocchini et al. 2010; 2007; Oldeland et al. 2010)(Figure 5.4). 

First, principal component analysis (PCA) for the Sentinel-2 image of April 21st was carried out in 

QGIS to reduce the number of dimensions. Next, using ArcGIS 10.3.1, pixel values for PC1 and PC2 

were extracted for 5 sampling units of 1 ha in size (100 pixels) for extensive, herb-rich grassland and 

5 sampling units for monoculture grassland. These values were exported to an Excel workbook. In 

Excel, mean values for PC1 en PC2 were calculated, this represents the spectral centroid which can 

be plotted in a two-dimensional coordinate system (Figure 5.4). Distance from each (PC1, PC2) 

coordinate to spectral centroid was calculated using Pythagoras:  

Distance to centroid = square root ((value PC1 - mean PC1)2 + (value PC2 - mean PC2)2) 

Finally, the mean distance was calculated by adding all distances and dividing by 100. 

 

 

Figure 5.4: Example of calculation of spectral heterogeneity for herb-rich and monoculture plots of 1 ha in size (100 
pixels). Values for PC1 and PC2 pixels  are plotted in 2D; black square = spectral centroid for herb-rich plot, black triangle 
= spectral centroid for monoculture plot. SVH predicts the higher the distance from the centroid, the higher the spectral 
variability and species richness (After: Rocchini et al. 2007). 
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5.5 Classification 

5.5.1 See5 data mining software 

See5 is a form of machine learning that aims to discover patterns in data that allow classification into 

categories (Rulequest Research 2017). See5 uses the univariate decision tree (DT) algorithm 

See5.0/C5.0, the successor of C4.5 developed by Quinlan in 1993 (Kotsiantis 2007). Univariate means 

that  decision boundaries at each tree node depend on the outcome of a test applied to one feature 

at a time, in contrast to multivariate DT's that use multiple features simultaneously. An advantage of 

See5 is that it can handle different data types in one run, e.g. nominal and numerical data, 

continuous and discrete data (Pal and Mather 2003). 

 The measure that is used by See5 to partition data into different classes is the normalized 

information gain (the difference in entropy) (Santini 2015). At each node of the DT, the algorithm 

aims to decrease the entropy of the dataset by creating subsets that are more homogeneous (Santini 

2015). The procedure is recursively repeated, creating new branches on the tree, until all data is 

classified (Pal and Mather 2003; Kotsiantis 2007). This may lead to very large and complex DT's. If the 

training data contains noise, e.g. samples that do not belong to the class they are thought to 

represent, overfitting may occur. Overfitting may lead to poor performance of the classifier when 

predicting data classes for new datasets. To avoid overfitting, the DT's may be pruned; the number of 

branches is reduced (Pal and Mather 2003; Kotsiantis 2007). 

 The demo version of See5 v2.10 (Rulequest Research 2017) was used to establish NDVI and 

S2REP thresholds that allow classification of monoculture and extensive grasslands on clay and peat 

soils. The created DT can be used to derive decision rules that can be implemented in QGIS. See5 will 

also give information on which attributes are the most important for classification.  

5.5.2 Statistical rule-based classification 

The See5 demo version only allows a maximum of 400 sample points as training input. Therefore, 

from the original 1600 training sample points, 400 random points were selected as training input for 

See5: 100 sample points for monoculture grassland on clay soils, 100 for monoculture on peat soils, 

100 for extensive grassland on clay soils and 100 for extensive on peat soils. The remaining sample 

points were used as test data to evaluate the decision rules. Studies have shown that up to a size of 

2100 input pixels, classification accuracy increases with the size of the training set. But it was also 

found that a training data set size of 300 samples per class provided an adequate description of land 

cover variations (Pal and Mather 2003). 

 Using SNAP 5.0, pixel values for all sample points were extracted for 26 attributes, NDVI and 

S2REP for 9 observation dates and MASD4_spring, MASD7_total and the MASD between subsequent 

observation dates (Table 5.2). In Excel, data was prepared to be used for analysis with See5. 

The decision rules that were generated by See5 were implemented in QGIS and classification was 

performed using the Semi-Automatic Classification Plugin version 5.2.4 (Congedo 2016)(Appendix K). 

The importance of specific attributes for classification was tested by removing e.g. April 21st values 

and repeating the See5 analysis. 
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Table 5.2: Attributes used for Statistical rule-based classification in See5. 

Attribute Data type Attribute Data type 

grasslandtype. | the target attribute S2REP8May: continuous. 

grasslandtype: extensive, monoculture. S2REP7June: continuous. 

NDVI12March: continuous. S2REP20July: continuous. 

NDVI1April: continuous. S2REP8Sep: continuous. 

NDVI11April: continuous. S2REP25Sep: continuous. 

NDVI21April: continuous. MASD1Apr11Apr: continuous. 

NDVI8May: continuous. MASD11Apr21Apr: continuous. 

NDVI7June: continuous. MASD21Apr8May: continuous. 

NDVI20July: continuous. MASD8May20July: continuous. 

NDVI8Sep: continuous. MASD20July8Sep: continuous. 

NDVI25Sep: continuous. MASD8Sep25Sep: continuous. 

S2REP12March: continuous. MASD4spring: continuous. 

S2REP1April: continuous. MASD7total: continuous. 

S2REP11April: continuous. ID: label. 

S2REP21April: continuous.   

 

5.5.3 Contextual rule-based classification 

Contextual rule-based classification aims to test if good classification results can be achieved by 

implementing simplified decision rules generated by See5 when only MASD4_spring values, S2REP 

and NDVI for April 21st are used. It also aims to improve the results of the statistical rule-based 

classification by incorporating knowledge on first mowing date. It uses only two Sentinel-2 scenes, 

April 11th and April 21st. See5 derived decision rules are combined with a threshold value of -0.1 for 

the NDVI change between April 11th and April 21st, which is used to identify fields mown before 

April 21st. This threshold value is based on the mowing model (See sections 5.7 and 7.2.1). If this 

threshold is not added to the decision rules, mown monoculture fields are misclassified as extensive 

grasslands. The decision rules were implemented in QGIS using the SCP (Appendix K). 

5.6 Accuracy assessment 

For accuracy assessment, the ground truthed grassland vector map for the whole of Littenseradiel is 

used as reference. From a sampling design point of view, one should not use pixels for validation that 

were already used for training. However, training data for Littenseradiel was based on just 200 pixels 

compared to the total of 1092409 classified pixels that were used for validation.  

 Accuracy assessment is performed using the SCP in QGIS (Congedo 2016). The SCP converts 

the ground truthed grassland vector shapefile into raster and  generates error matrices and error 

raster maps, calculates overall accuracy, producer's and user's accuracy and Kappa statistics. The 

Kappa coefficient or KHAT statistic can be used to test whether differences between two images are 

due to chance or real (dis)agreement. This is especially useful when the number of classes is small, 

because in a two category classification an accuracy of 50% may be reached solely due to random 

chance (Lillesand et al. 2015). Calculation of the Kappa coefficient or KHAT statistic is based on the 

error matrix. True agreement will approach 1 and chance agreement approaches 0. It can also be 

used to compare classification accuracy between the two used methods (Lillesand et al. 2015). A 

conceptual definition of KHAT is: 
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Overall accuracy is calculated as the total number of correctly categorized pixels divided by the total 

number of pixels. Producer's accuracy is the number of correctly classified pixels for each class 

divided by the total number of pixels for that class in the reference raster. User's accuracy is the 

number of correctly classified pixels for each class divided by the total number of pixels for that class 

in the classified raster; this measure of commission represents the probability that a pixel that is 

classified into e.g. monoculture actually represents monoculture grassland on the ground (Lillesand 

et al. 2015). 

5.7 Detection of mowing and grazing 

 

For meadow bird conservation it is important to have an accurate model for detection of 1st mowing 

dates for individual parcels. It would also be of interest to know whether birds are nesting in parcels 

that are grazed by cattle or sheep. Mowing will cause a strong, sudden decrease in biomass and crop 

height; also, patches of bare soil may become visible (Dussaux et al. 2014). Grazing causes a more 

subtle decrease in biomass and crop height; within a parcel, biomass decrease will vary, depending 

on stocking densities. 

 Change in NDVI between two consecutive observation dates was used to create a model that 

allows detection of mowing. In theory, MASD may be used to detect mowing, however, it is an 

absolute value, which makes it difficult to discriminate between fast growth and mowing. Change in 

NDVI has proven useful for detection of mowing in previous research (Courault et al. 2010; Lips 

2011). To assess the effect of mowing on NDVI, values from parcels that were not mown, freshly 

mown and recently mown, were extracted for April 21st and May 7th, using 6 plots of 1 ha in size 

(200 pixels per category). Based on the results, a mowing threshold was established.  

 To test the performance of the Sentinel-2 based mowing model, it was compared with the 

EVI based mowing model of Lips (2011). For this purpose, MODIS13Q 16 day EVI composites were 

downloaded for the 2016 growing season. The MODIS datasets were projected into WGS84 / UTM 

zone 31N. Sentinel-2 NDVI and MODIS EVI pixel values were extracted for monoculture and  

extensive plots in Littenseradiel. 

 The effect of grazing on Sentinel-2 based NDVI values was assessed by extracting NDVI values 

for April 21st and May 8th for  2 grazed and 2 non-grazed plots of 1 ha in size (200 pixels for each 

class). 
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 6.0 Results 

6.1 Spectral separability 

6.1.1 Spectral response curves 

Figure 6.1 shows the spectral response curves for monoculture and extensive grassland on both clay 

and peat soils, based on mean reflectance values for all observation dates. For each observation 

date, the response curves for different grassland types appear almost similar in shape but differ in 

amplitude, especially in spring. Mann-Whitney U tests were performed to compare mean reflectance 

for all four grassland categories (Appendix J). E.g. for April 21st, mean reflectance for monoculture 

grasslands is significantly different from that of extensive grasslands on both clay and peat soils (p < 

0.0001, alpha 0.05). When comparing clay vs. peat soils, reflectance means are also significantly 

different (p < 0.0001, alpha 0.05), with the exception of B6 for clay mono vs. peat mono. For some of 

the spectral bands, differences between grassland categories are no longer significant after the 1st 

mowing event. 

 In general, all response curves display low reflectance for blue visible light (B2), a small peak 

for green visible light (B3) and low reflectance for red visible light (B4). In April and July, extensive 

grasslands on clay soils have slightly higher reflectance for visible light. In May and June visible light is 

reflected more by monoculture grassland on clay soils.  

 The vegetation red-edge is visible as a steep increase in reflectance between B4 and B7. In 

early spring, March 12th to April 21st, this increase is least pronounced for extensive grassland on 

peat soils and most pronounced for monoculture grassland on clay soils. For all grassland types, 

reflectance increases between B7 and B8, reaching the top of the NIR plateau. Reflectance is highest 

in B8 between March and May; after May, the reflectance peak shifts to B8A. In spring, monoculture 

grassland on clay and peat has higher reflectance values for the red-edge and NIR plateau than 

extensive grassland. Values for monoculture on peat soil lag slightly behind those of monoculture on 

clay soil, but in May reflectance values for monoculture on peat soil are slightly higher.  

 Values decrease steeply between B8A and B11 and decrease further for B12. For March 12th 

and April 1st, reflectance for B11 is lower for extensive grassland on peat soils than for the other 

grassland categories. On March 12th extensive grassland on peat has low values for B12. In May and 

June, B12 values are high for monoculture grassland on clay soils. For all categories, difference 

between mean reflectance values is least pronounced in September. 

6.1.2 Interpretation 

The overall 'peak-and-valley' configuration of the spectral response curves is typical for healthy 

grassland vegetation (compare e.g. Figure 2.4). Higher reflectance for visible light between April 11th 

and April 21st for extensive grasslands may be caused by the presence of flowering red and yellow 

herbs. In July it may be attributed to vegetation stress due to a period with high temperatures 

causing drought; probably more brown dry grass is present. Also, mowing may lead to higher 

influence of soil reflectance because of decreased vegetation density, this will increase reflectance 

for visible light (Dussaux et al. 2014). This effect also explains higher visible light reflectance for 

monoculture on clay soils on May 8th.  

 From March 12th to April 21st, reflectance in the red-edge, NIR and SWIR range for 

monoculture on peat soils is lower than for monoculture on clay and reflectance for extensive on 

peat is lower than extensive on clay. This may be caused by differences in soil moisture. Low 

reflectance in B11 is related to high leaf water content (Table 4.1). Higher average groundwater  
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Figure 6.1: Spectral reflectance curves based on mean reflectance values for extensive and monoculture grassland 
sample points on clay and peat soils. 
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levels in peat soil areas slow down grass growth (Figure 4.9). In early spring, vegetation cover is less 

dense on peat soils, especially in extensive grasslands. Because less photosynthetically active 

vegetation is present, reflectance will be lower than for grassland on clay soils. Also, background 

effects of soil moisture and the soil itself may directly decrease reflectance. It is known that high 

organic matter content of peat soils reduces their reflectance (Lillesand et al. 2015). Low reflectance 

in SWIR bands 11 and 12 for extensive grasslands on peat soils for March 12th and April 1st may be 

caused by these effects. 

 On May 8th and June 7th reflectance in B11 is high for monoculture grassland on clay soils, 

this may be due to reduced leaf water content caused by drought. Temperatures in May were higher 

than normal and precipitation between May 2nd and June 12th was low (Figure 4.11). The other 

grassland categories are not affected by drought, probably thanks to higher groundwater levels.  

  High reflectance values in the red-edge and NIR range for monoculture grassland on clay and 

peat soils in spring, point to high amounts of total biomass. Fast growing grass types in intensively 

managed fields produce denser swards than extensive grass types, hence more photosynthetically 

active biomass. Onset of the growing season is earlier for monoculture grassland on clay soils than on 

peat soils. Application of manure on peat soils may be delayed in spring due to very wet conditions. 

Natural fertility of clay soils is also higher than for peat soils. 

 After the first mowing date for monoculture grassland, around May 8th, red-edge and NIR 

reflectance values decrease and start to fluctuate for the remaining months of the growing season, 

due to repeated mowing and re-growth. Mean reflectance values for extensive grassland decrease 

after June 7th; 1st mowing date for these fields is around June 15th and may be postponed to July if 

meadow bird chicks are present or if the fields are used for hay production. From July to September, 

extensive grassland shows similar fluctuations as monoculture grassland which are driven by 

mowing. 

6.1.3 Coincident spectral plots 

The coincident spectral plots show the mean spectral response for extensive and monoculture 

grassland on clay soils for each spectral band (Figure 6.2) (Appendix B). The variance of the 

distribution is illustrated by the error bars that represent +/- 2 standard deviations. These plots can 

be used to assess overlap between category response patterns (Lillesand et al. 2015). On September 

25th, spectral response shows overlap for all bands for both types of grassland. On April 21st, 

spectral response pattern shows the least overlap for monoculture and extensive grassland. Relative 

reversal of spectral response can be seen for e.g. B5 and B7. On September 8th, also relatively little 

overlap exists between monoculture and extensive grassland, especially for the red-edge bands, NIR 

and SWIR bands 11 and 12 (Appendix B). The plots give insight into which combination of bands may 

be useful for discriminating between grassland types.  

 

6.1.4 Variance in reflectance for all sample points 

Throughout the growing season, reflectance for bands 6, 7, 8 and 8A shows the highest variability 

(Figure 6.3). Bands 5 and 11 also show some variability. From March 12th to April 11th, variability for 

band 11 displays a peak for extensive grassland on peat soils, which may be related to differences in 

soil moisture. On May 8th, variability for bands 11 and 12 displays a peak for monoculture grassland 

on clay soil, which may be related to differences in soil moisture and soil background effects due to 

decreased vegetation density caused by mowing. In general, in springtime, variance for extensive 
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grassland is much higher than for monoculture grasslands. Variance for extensive grassland on peat 

soils is twice as high as for extensive grasslands on clay soils. For monoculture grasslands, from April 

onwards, variance on peat and clay soils is quite similar. After the 1st mowing date, variance for 

monoculture grasslands strongly increases. 

6.1.5 Conclusion 

In springtime, for all spectral bands on both clay and peat soils, mean spectral response for extensive 

grasslands differs significantly from the mean response for monoculture grasslands 

 (p < 0.0001, alpha 0.05 for April 21st)(Appendix J). After the 1st mowing event (around May 8th for 

monoculture and after June 7th for extensive grasslands), spectral response patterns show more 

overlap; for some of the spectral bands, differences between monoculture and extensive grassland 

are no longer significant (Appendix J). 

 Local soil type strongly influences spectral response patterns. When comparing clay vs. peat 

soils, it was found that in springtime, mean reflectance values for extensive grassland and 

monoculture grasslands are significantly different (p < 0.0001, alpha 0.05 for April 21st).  

 The spectral response curves reveal that the possibility of discerning extensive and 

monoculture grasslands on both clay and peat soils is likely to be highest for April 11th and April 21st, 

when differences in reflectance are most pronounced. This conclusion is supported by the coincident 

spectral plot for April 21st. Based on the response curves and the coincident spectral plot, it can be 

concluded that the spectral bands with the least overlap are bands 5, 7, 8 and 8A. Although B6 shows 

overlap in the coincident plot for monoculture grassland, the mean spectral response curves for peat 

soils show clear differences in reflectance for B6 between extensive grassland and monoculture 

grassland. Bands 6, 7, 8 and 8A also show the highest variability on April 21st.  

 Therefore, the most important bands that allow discrimination of grassland categories are 

the Sentinel-2 red-edge and NIR bands. This suggests that both the S2REP vegetation index and the 

NDVI may be important for successful classification, since they are based on these bands.  

                                  
Figure 6.2: Coincident spectral plot for April 21st and September 25th 2016 for Littenseradiel (clay soil) sample points. 

Boxes show 1st quartile, median, 3rd quartile; Whiskers show 2 x plus and 2 x minus standard deviation (See Appendix B 

for all coincident spectral plots for Littenseradiel). 
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Figure 6.3: Variance in reflectance for all sample points. 
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6.2 Vegetation indices 

6.2.1 NDVI boxplot for Littenseradiel 

The NDVI boxplot for Littenseradiel shows differences in NDVI between extensive and monoculture 

grassland on clay soils (Figure 6.4). In general, monoculture grassland has higher NDVI values than 

extensive grasslands. NDVI values for both grass types slightly decrease between March 12th and 

April 1st. Then NDVI increases to a mean maximum of 0.96 on April 21st for monoculture grasslands 

and 0.89 for extensive grasslands on April 21st and May 8th. After this peak, values decrease and 

start to fluctuate and display a wider range.  

 Histograms and statistical tests (Shapiro-Wilk test) have shown that NDVI values for all 

samples follow a non-normal distribution (Appendix J). The histograms are negatively skewed. 

Normalization using reflection in combination with log-transformation was not possible. Therefore, 

non-parametric statistical tests were carried out for all dates to see whether NDVI values are 

significantly different for extensive and monoculture grassland. The Kolmogorov-Smirnov test 

revealed that for each date, samples for both grassland types follow a different distribution 

(p < 0.0001, alpha 0.05). The Mann-Whitney U test was used to compare sample means; based on 

the test results it can be concluded that for all dates sample means are significantly different  

(p < 0.0001, alpha 0.05).   

    

6.2.2 NDVI boxplot for Grouw  
The NDVI boxplot for Grouw shows the differences between extensive and monoculture grassland on 

peat soils (Figure 6.5). For all observation dates, except June 7th, NDVI is higher for monoculture 

than for extensive grassland. The range in NDVI is wider for extensive grasslands than for 

monoculture. NDVI values increase to a mean maximum of 0.95 on April 21st for monoculture 

grasslands and 0.84 for extensive grasslands on June 7th. After this peak, values decrease and start to 

fluctuate and display a wider range.  

 Histograms and statistical tests (Shapiro-Wilk test) have shown that NDVI values for all 

samples follow a non-normal distribution. The histograms are negatively skewed. Normalization 

using reflection in combination with log-transformation was not possible. Therefore, non-parametric 

statistical tests were carried out for all dates to see whether NDVI values are significantly different 

for extensive and monoculture grassland. The Kolmogorov-Smirnov test revealed that for each date, 

samples for both grassland types follow a different distribution (p < 0.0001, alpha 0.05). The Mann-

Whitney U test was used to compare sample means; based on the test results it can be concluded 

that for all dates sample means are significantly different (p < 0.0001, for September 25th p = 0.016, 

alpha 0.05). 
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Figure 6.4: NDVI for Littenseradiel (clay soils). The box plots show 1st quartile, median, 3rd quartile, whiskers show 
minimum and maximum values (See Appendix C for box plot that shows seasonal variability more clear). 

 

Figure 6.5: NDVI for Grouw (peat soils). The box plots show  1st quartile, median, 3rd quartile, whiskers show minimum 
and maximum values. 
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6.2.3 Clay soil vs. peat soil NDVI boxplots 

Differences in NDVI between clay soil and peat soil were also assessed (Figure 6.6). In spring, NDVI 

for monoculture and extensive grasslands on clay soils is higher than for peat soils. Extensive and 

monoculture grasslands on peat soils display a wider range in NDVI values than on clay soils, except 

for monoculture grassland on clay soils on May 8th.  

 Non-parametric statistical tests were carried out for all dates to see whether NDVI values are 

significantly different for grassland on peat soils and on clay soils. The Kolmogorov-Smirnov test 

revealed that for all dates, except for extensive grassland on September 8th, samples for both soil 

types follow a different distribution (p < 0.0001, alpha 0.05). The Mann-Whitney U test was used to 

compare sample means; based on the test results it can be concluded that for almost all dates, 

sample means are significantly different (p < 0.0001, alpha 0.05). Except for two observation dates: 

On June 7th, the mean is not significantly different for both extensive (p = 0.630) and monoculture 

grassland (p = 0.225). For September 8th it is not significantly different for extensive grassland (p = 

0.397).  

6.2.4 Interpretation 

Seasonal pattern for NDVI is comparable with the grassland production curve (Figure 2.1). NDVI 

reaches a first peak in April (monoculture) or May/June (extensive), reflecting high biomass and high 

photosynthesis activity; then NDVI values decrease in June/July before they reach a second peak in 

September. For both extensive grassland and intensive monoculture grassland on clay soils, the NDVI 

drops between March 12th and April 1st (Figure 6.4). This is probably due to the cold weather in the 

last weeks of March (Figure 4.11). For peat soils, this decrease is not so distinct, probably because 

onset of grass growth is delayed here due to higher groundwater levels; also, on wet fields, fertilizer 

cannot be applied as early as on dewatered clay soils.  

 Until June, NDVI is slightly lower for peat soils than for clay soils for both grassland types. This 

may be related to the higher natural fertility of clay soils in combination with decreased springtime 

growth due to higher groundwater levels in peat soils. For March and April, NDVI values show a 

wider range for extensive grassland than for monoculture grassland, especially for peat soils. The 

narrow range for monoculture grassland in April is most likely caused by the homogeneous character 

of fast-growing ryegrass types. From the end of April/beginning of May onwards, monoculture 

grassland on clay soils shows more variation in NDVI due to mowing. This is consistent with the 

timeline for agricultural activities in which is stated that 1st cuts were taken between May 6th and 

May 12th (section 4.1.5).  For monoculture on peat soils the NDVI variation increases in June. Visual 

inspection of the Sentinel-2 true color images reveals that the first mowing activity on monoculture 

grassland on peat soils did already occur in May, but was limited to relatively few parcels. First cuts 

for most monoculture parcels on peat soils are taken between May 8th and June 7th. 

 On July 20th, NDVI strongly drops for extensive grassland for both clay and peat soils. After 

June 15th, mowing is allowed in the bird reserves; the mowing date may be postponed if meadow 

birds chicks are present. But, by the end of July, most parcels will have been mown. The NDVI drop in 

July may also be related to slower grass growth during the flowering season (Figure 2.1). 

 When comparing these values with the graph from Franke et al. (2012)(Figure 2.5), it is found 

that overall trends are very similar. NDVI values for extensive grassland in Littenseradiel resemble the 

values of extensively used grassland in Germany, although mean NDVI is higher in Friesland. The 

higher values probably reflect the agricultural use of the bird reserves in the South-Central Friesland 

study area. Monoculture grasslands in Friesland show even higher NDVI values than the intensively 

used grasslands in Germany. This may also be attributed to application of higher amounts per ha of 

liquid manure in the Netherlands (section 2.1.3). 
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Figure 6.6: Clay soil vs. peat soil NDVI box plots for extensive and monoculture grassland. The box plots show  1st 
quartile, median, 3rd quartile, whiskers show minimum and maximum values. 
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6.2.5 S2REP boxplot for Littenseradiel 

The S2REP boxplot shows the differences in S2REP value for the sample points for extensive and 

monoculture grassland on clay soils (Figure 6.7). The value increases between March 12th and April 

1st; it continues to increase until April 21st for monoculture grassland, whilst, on April 11th the 

S2REP shows a slight decrease for extensive grassland. After April 11th, values increase until June 7th 

for extensive grassland. S2REP fluctuates after June. From May onwards, the range in S2REP 

increases for monoculture grassland; for extensive grassland the S2REP range shows less variation. 

Mean values vary between 720 and 727 nm for monoculture and 716 and 722 nm for extensive 

grasslands. 

 Histograms and statistical tests (Shapiro-Wilk test) have shown that S2REP values for all 

samples follow a non-normal distribution. Histograms are slightly skewed to the left. Log 

transformation of the data was not possible. Therefore, non-parametric statistical tests were carried 

out for all dates to see whether S2REP values are significantly different for extensive and 

monoculture grassland. The Kolmogorov-Smirnov test revealed that for each date, samples for both 

grassland types follow a different distribution (p < 0.0001, alpha 0.05). The Mann-Whitney U test was 

used to compare sample means for both grassland types; based on the test results it can be 

concluded that for all dates sample means are significantly different (p < 0.0001, alpha 0.05).  

 

6.2.6 S2REP boxplot for Grouw  

The S2REP boxplot shows the differences in S2REP value for the sample points for extensive and 

monoculture grassland on peat soils (Figure 6.8). Fluctuations are similar to those of clay soils, 

including the slight decrease of S2REP for extensive grasslands between April 1st and April 11th.   

Mean values for monoculture grasslands vary between 719 and 726 nm, and between 714 and  

723 nm for extensive grasslands. 

 Histograms and statistical tests (Shapiro-Wilk test) have shown that S2REP values for all 

samples follow a non-normal distribution. Histograms are slightly skewed to the left. Log 

transformation of the data was not possible. Non-parametric statistical tests were carried out for all 

dates to see whether S2REP values are significantly different for extensive and monoculture 

grassland. The Kolmogorov-Smirnov test revealed that for each date, samples for both grassland 

types follow a different distribution (p < 0.0001, alpha 0.05). The Mann-Whitney U test was used to 

compare sample means for both grassland types; based on the test results it can be concluded that 

for all dates sample means are significantly different (p < 0.0001, alpha 0.05). 
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Figure 6.7: S2REP for Littenseradiel, clay soils. The box plots show  1st quartile, median, 3rd quartile, whiskers show 
minimum and maximum values. 
 

 
 
Figure 6.8: S2REP for Grouw, peat soils. The box plots show  1st quartile, median, 3rd quartile, whiskers show minimum 
and maximum values. 
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6.2.7 Clay soil vs. Peat soil S2REP boxplots 

Differences in S2REP between clay and peat soils were assessed (Figure 6.9). In early spring, mean 

S2REP values for both grassland types are higher on clay soil than on peat soils. Values show strong 

overlap for extensive grassland on clay and peat soils; for monoculture grassland on clay and peat 

soils there is no overlap in early spring. Extensive grassland on peat soils displays a wider range of 

S2REP than clay soils. For monoculture grassland, this difference is not so pronounced. On April 21st, 

S2REP is highest for monoculture grassland whilst for extensive grassland values are highest on April 

1st. 

 Non-parametric statistical tests were carried out for all dates to see whether S2REP values 

are significantly different for grassland on peat soils and on clay soils. The Kolmogorov-Smirnov test 

revealed that for all dates, except for monoculture grassland on  June 7th (p = 0.099), samples for 

both soil types follow a different distribution (p < 0.0001, alpha 0.05). The Mann-Whitney U test was 

used to compare sample means; based on the test results it can be concluded that for almost all 

dates, sample means are significantly different (p < 0.0001, alpha 0.05). Except for April 1st, here the 

mean is not significantly different for extensive grassland (p = 0.168) and also for June 7th  

(p = 0.341), September 8th (p = 0.788) and September 25th (p = 0.062) not for monoculture 

grassland.  

6.2.8 Interpretation 

The overall S2REP seasonal pattern is comparable to the grassland production curve (Figure 2.1), with 

a peak in April, decrease in summer and a second peak in September. In early spring, March to April 

21st, S2REP shows pronounced differences for different types of grassland. Compared to the NDVI 

time series, there is less overlap between extensive and monoculture grasslands. After 1st mowing 

dates, the values fluctuate and show more overlap. Monoculture grasslands reach the highest S2REP 

values on April 21st; for monoculture on clay soils the highest mean is 727 nm compared to 726 nm 

for peat soils. Highest mean value for extensive grassland on clay soils is 722 nm and 723 nm for peat 

soils. S2REP for extensive grasslands on clay and peat soils shows a lot of overlap, although the S2REP 

range is much wider for peat soils. 

 It is likely that high S2REP values for monoculture grasslands are related to high amounts of 

chlorophyll and nitrogen in the leaves stimulated by application of liquid manure. Red Edge Position 

values near 700 nm have been associated with low leaf chlorophyll concentration, whilst Red Edge 

Position values near 725 nm point to high leaf chlorophyll concentration (Cho and Skidmore 2006). 

This means that even values for extensive grasslands can be considered quite high, which may be 

evidence for high nitrogen deposition (eutrophication) through air and water pollution; this is 

problematic in nature areas where it causes loss of biodiversity (CLO 2016).  

 For observation dates in March and April, S2REP may be a suitable attribute for 

discriminating between extensive and intensive grasslands. Because S2REP and NDVI distributions for 

clay and peat soil are significantly different, successful grassland classification in Friesland has to be 

based on training areas for both clay and peat soil. 
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Figure 6.9: S2REP clay soil vs. peat soils. The box plots show  1st quartile, median, 3rd quartile, whiskers show minimum 
and maximum values. 
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6.3 MASD 

6.3.1 MASD boxplots 

Figure 6.10 shows the boxplots for the Mean Absolute Spectral Dynamic parameter. MASD_total is 

based on 7 observation dates: April 1st, April 11th, April 21st, May 8th, July 20th, September 8th and 

September 25th; March 12th was excluded because this image contains small clouds and cloud 

shadows, especially in the Grouw area; June 7th is also excluded due to presence of clouds in the 

Littenseradiel field survey area. MASD_spring is based on 4 observation dates: April 1st, April 11th, 

April 21st, May 8th.  

 Histograms and statistical tests have shown that MASD_total and MASD_spring values follow 

a non-normal distribution (Appendix J). Non-parametric statistical tests were carried out to see 

whether MASD values are significantly different for extensive and monoculture grassland in each 

field survey area, as well as for clay and peat soils. When comparing extensive and monoculture 

grassland, the Kolmogorov-Smirnov test showed that MASD_total and MASD_spring distributions are 

significantly different for both clay and peat soils (p < 0.0001, alpha 0.05). When comparing clay and 

peat soils, the MASD_total (p = 0.372, alpha 0.05) and MASD_spring (p = 0.081, alpha 0.05) 

distributions are not significantly different for extensive grassland. For monoculture grassland, the 

MASD_total (p = 0.005, alpha 0.05) and MASD_spring (p < 0.0001, alpha 0.05) distributions are 

significantly different. The Mann-Whitney U test was used to compare sample means; based on the 

test results it can be concluded that for both extensive and monoculture grassland on clay or peat 

soil, the MASD_total and MASD_spring means are significantly different (p < 0.0001, alpha 0.05). 

When comparing clay vs. peat soil, MASD_total (p = 0.451, alpha 0.05) and MASD_spring (p = 0.573, 

alpha 0.05) means do not significantly differ for extensive grassland; for monoculture grassland, the 

MASD_total (p = 0.029, alpha 0.05) and MASD_spring (p <0.0001, alpha 0.05) means are significantly 

different.  

MASD_spring may be a suitable variable to use for grassland classification, because the boxes in the 

boxplots for extensive and intensive grassland show no overlap. 

 

 

Figure 6.10: MASD box plots for clay and peat soils for the whole season and for spring. The box plots show  1st quartile, 
median, 3rd quartile, whiskers show minimum and maximum values. 
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6.3.2 MASD maps 
The map below shows MASD4_spring (April 1st-May 8th) for grassland parcels in Littenseradiel, this 

is after the 1st mowing date for monoculture grassland (end April - beginning of May) and before the 

first mowing date for extensive grassland (Figure 6.11). Meadow bird reserves and other extensive 

grassland areas, such as fields of biological/organic farmers, display low spectral dynamics. 

Monoculture grassland shows high spectral dynamics. This can be attributed to the presence of fast 

growing ryegrass types and early mowing. Also, small pastures that are grazed intensively by sheep 

may show high dynamics. In some parcels with low spectral dynamics, irregular areas with high 

spectral dynamics can be seen, this represents presence of water. In early spring, farmers may create 

shallow ponds ('plas-dras' areas) for the meadow birds in some of their parcels. In case of subsidized 

agricultural nature management, these areas have to be kept wet from February 15th to June 15th 

(or longer, depending on the management package). After this date, the ponds dry out (see SWIR 

composite below; Figure 6.12). Also, straight dark red lines in otherwise blue or light red parcels 

probably represent ditches with water. Checkerboard and striped patterns may represent "mosaic 

management", parcels which have been partly mown, so the birds can find refuge in the remaining 

higher grass. Stripes also represent parcels that are partly mown to harvest fresh grass for feeding 

cattle that are kept indoors. 

 

 

Figure 6.11: MASD4_spring map for Littenseradiel based on observation dates: April 1st, April 11th, April 21st and May 
8th. Infrastructure, villages and non-grassland are shown in black. 
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Figure 6.12: Spring time series Sentinel-2 SWIR false color composite for small part of Littenseradiel compared with 
MASD4_spring map. A = moist area, B = freshly mown fields. 

SWIR false color composites can be used to reveal soil moisture. Irregular areas with high MASD 

values (A) represent moist areas that dry up later in summer. Freshly mown fields (B) show reduced 

moisture content and high MASD. 

 Figure 6.13 shows the MASD7_total map for the whole season of 2016. Compared to the 

MASD4_ spring map, spectral dynamics has slightly increased in bird reserves, due to repeated 

mowing and grazing from late June until September. 

 The MASD4_spring map for Grouw displays mostly low spectral dynamics in meadow bird 

reserves and high spectral dynamics in monoculture grassland (Figure 6.14). High dynamics in 

monoculture grassland is probably caused by fast growing grass types and early mowing. Irregular 

areas with high dynamics represent very moist areas that dry out during late spring/early summer. 

On the MASD7_total map for April-September low spectral dynamics is more clear for bird reserves, 

especially for De Burd. In general, taking into account all observation dates, the bird reserves in the 

peat area have lower spectral dynamics than monoculture areas; this is also found for the 

Littenseradiel area. 

 Figures 6.15 shows the MASD4_spring map for the South-Central Friesland study area with 

an overlay of important (meadow) bird areas within the National Nature Network; extensive 

grasslands that are part of the National Nature Network have low spectral dynamics and appear in 

dark blue.  

 

 



75 
 

Figure 6.13: MASD7_total (April-September) for Littenseradiel. 

Figure 6.14: MASD maps for Grouw: Left MASD4_spring, right MASD7_total for April-September 2016. 
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Figure 6.15: MASD4_spring map with the outlines of relevant (meadow) bird areas for the South-Central Friesland study 
area (Background image from Provincie Fryslân 2017). 
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6.4 Classification 

6.4.1 Statistical rule-based classification 

Table 6.1 shows the decision tree that was created with See5, based on analysis of 26 attributes for 

nine observation dates (See Table 5.3 for used attributes). The evaluation on training data shows that 

three monoculture sample points were misclassified as extensive, an error of 0.8%. The DT uses five 

attributes for four observation dates. The S2REP values for April 21st are most important for 

classification, this attribute is used for all classification decisions (100%). S2REP values for September 

8th (51%) and NDVI values for April 21st (50%) are also important to further discriminate between 

extensive and monoculture grassland. Importance of S2REP and NDVI for April 21st is in accordance 

with the S2REP and NDVI boxplots. These graphs showed that differences between both grassland 

types were greatest on April 21st. Importance of the S2REP for September 8th is in accordance with 

the coincident spectral plot, although it was less expected due to overlap of the S2REP boxplots. 

 Next, the remaining 1179 sample points were used to evaluate the See5 decision tree; 21 of 

the original 1600 sample points were removed because of cloud coverage. 54 out of 1179 sample 

points were misclassified, an error of 4.6%. Higher error percentage in test data compared to training 

data may be due to overfitting to noise in the training data; it is possible that some training samples 

may not be members of the class they should represent (Pal and Mather 2003). The decision rules 

that were created by See5 were implemented in QGIS to generate a classification map (Figure 6.16). 

Table 6.1: See5 output based on analysis of 26 attributes. 

See5 output: Decision tree, training data evaluation & attribute usage based on 26 attributes 
 
See5 [Release 2.10]     Wed May 31 14:16:58 2017 
 
 
Class specified by attribute `grasslandtype' 
 
 
Read 400 cases (26 attributes) from grassland.data 
 
Decision tree: 
 
S2REP21April <= 724.0084: 
:...S2REP8Sep <= 721.8442: extensive (170/2) 
:   S2REP8Sep > 721.8442: 
:   :...S2REP21April > 722.8615: monoculture (5) 
:       S2REP21April <= 722.8615: 
:       :...S2REP25Sep <= 722.9341: extensive (25/1) 
:           S2REP25Sep > 722.9341: monoculture (2) 
S2REP21April > 724.0084: 
:...NDVI21April > 0.9278637: monoculture (176) 
    NDVI21April <= 0.9278637: 
    :...S2REP21April <= 724.6226: extensive (5) 
        S2REP21April > 724.6226: 
        :...MASD21Apr8May <= 0.01505: extensive (3) 
            MASD21Apr8May > 0.01505: monoculture (14) 

 

 
Evaluation on training data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             8        3( 0.8%)   << 
 
 
           (a)   (b)      <-classified as 
          ----  ---- 
           200            (a): class extensive 
             3   197     (b): class monoculture 
 
 
        Attribute usage: 
 
            100%  S2REP21April 
              51%  S2REP8Sep 
              50%  NDVI21April 
                7%  S2REP25Sep 
                4%  MASD21Apr8May 

 

Evaluation on test data (1197 cases) 
Evaluation on test data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             8        13( 3.3%)   << 
 
 
   (a)   (b)    <-classified as 
   ----  ---- 
 173     9    (a): class extensive 
    4   214   (b): class monoculture 

Evaluation on test data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             8        15( 3.8%)   << 
 
 
 (a)   (b)    <-classified as 
 ----  ---- 
385    15    (a): class extensive 
                   (b): class monoculture 

 

Evaluation on test data (379 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             8        26( 6.9%)   << 
 
 
      (a)   (b)    <-classified as 
      ----  ---- 
                        (a): class extensive 
      26   353    (b): class monoculture 
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6.4.2 The importance of April for classification 

See5 was run again to examine which attribute is the most important for classification if S2REP and 

NDVI for April 21st are excluded. This returns a much more complex DT in which S2REP for April 11th 

is the most important attribute (100%), followed by MASD4_spring (55%) (which still includes April 

21st), S2REP for May 8th and S2REP for March 12th (Table 6.2). S2REP for September 8th is not used. 

The results illustrate the importance of the S2REP vegetation index for classification and confirms 

that April is the optimal month to discriminate between extensive and monoculture grassland. This is 

consistent with findings of Nitze et al. (2015) for grasslands in Ireland. 

 

Table 6.2: See5 output when S2REP and NDVI for April 21st are removed from the dataset. 

See5 Decision tree, training data evaluation & attribute usage based on 24 attributes 
See5 [Release 2.10]     Wed May 31 15:17:03 2017 
 
Class specified by attribute `grasslandtype' 
 
Read 400 cases (24 attributes) from 11april.data 
 
Decision tree: 
 
S2REP11April <= 722.0383: 
:...S2REP8May <= 724.415: extensive (170/3) 
:   S2REP8May > 724.415: 
:   :...NDVI12March <= 0.8061701: monoculture (5) 
:       NDVI12March > 0.8061701: extensive (4) 
S2REP11April > 722.0383: 
:...MASD4spring <= 0.03289: 
    :...S2REP11April <= 723.4532: 
    :   :...NDVI7June <= 0.7463987: monoculture (3) 
    :   :   NDVI7June > 0.7463987: extensive (22/2) 
    :   S2REP11April > 723.4532: 
    :   :...MASD1Apr11Apr <= 0.03072: extensive (5/1) 
    :       MASD1Apr11Apr > 0.03072: monoculture (23/1) 
    MASD4spring > 0.03289: 
    :...S2REP12March > 715.9318: monoculture (159/1) 
        S2REP12March <= 715.9318: 
        :...NDVI8Sep <= 0.8650235: extensive (3) 
            NDVI8Sep > 0.8650235: monoculture (6) 
 

Evaluation on training data (400 cases): 
 
            Decision Tree    
          ----------------   
          Size      Errors   
 
            10       8( 2.0%)   << 
 
 
           (a)   (b)      <-classified as 
          ----  ---- 
           198     2    (a): class extensive 
             6   194    (b): class monoculture 
 
 
        Attribute usage: 
 
           100%  S2REP11April 
             55%  MASD4spring 
             45%  S2REP8May 
             42%  S2REP12March 
               7%  MASD1Apr11Apr 
               6%  NDVI7June 
               2%  NDVI12March 
               2%  NDVI8Sep 
 
 

Evaluation on test data (1197 cases) 
Evaluation on test data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
            10       13( 3.3%)   << 
 
 
      (a)   (b)    <-classified as 
      ----  ---- 
     387    13   (a): class extensive 
                       (b): class monoculture 
 

Evaluation on test data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
            10      14( 3.5%)   << 
 
 
        (a)   (b)    <-classified as 
       ----  ---- 
      173     9     (a): class extensive 
         5   213    (b): class monoculture 
 

 

Evaluation on test data (379 cases): 
 
         Decision Tree    
          ----------------   
          Size      Errors   
 
            10       40(10.6%)   << 
 
 
      (a)   (b)    <-classified as 
     ----  ---- 
                      (a): class extensive 
    40   339    (b): class monoculture 
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6.4.3 Contextual rule-based classification 

This is a combination of simplified statistical classification and knowledge of 1st mowing date. The 

simplified classification is based on three attributes: MASD4_spring, S2REP and NDVI for April 21st. 

Evaluation on training data returns an error of 3.3%; 3 extensive sample points were misclassified as 

monoculture sample points and 10 monoculture sample points as extensive (Table 6.3). Again, S2REP 

for April 21st is the most important attribute used for classification. MASD4_spring is not used.  

 The remaining sample points were used as test data. Based on the simplified decision rules, 

55 out of 1179 sample points are misclassified, an error of 4.6%. Misclassification mainly occurs for 

monoculture points, of these 46 are misclassified as extensive. The error percentage is similar to that 

of the complex decision tree (See section 6.4.1).  

 To avoid misclassification of monoculture fields that were mown before April 21st, an 

additional decision rule is added before classification. This rule implements a mowing threshold value 

of -0.01 for the NDVI change image NDVIApril11April21. 

 The simplified classification rules in combination with the mowing threshold were 

implemented in the SCP in QGIS to create the contextual rule-based classification map (Figure 6.17).   

Table 6.3: See5 output using three attributes, S2REP and NDVI on April 21st and MASD4_spring. 

See5 Decision tree, training data evaluation & attribute usage based on 3 attributes  
See5 [Release 2.10]     Wed May 31 14:54:54 2017 
 
Class specified by attribute `grasslandtype' 
         
Read 400 cases (3 attributes) from three.data 
 
Decision tree: 
 
S2REP21April <= 724.0084: extensive (202/10) 
S2REP21April > 724.0084: 
:...NDVI21April > 0.9278637: monoculture (176) 
    NDVI21April <= 0.9278637: 
    :...S2REP21April <= 724.6226: extensive (5) 
        S2REP21April > 724.6226: monoculture (17/3) 
 

 
Evaluation on training data (400 cases): 
 
            Decision Tree    
          ----------------   
          Size      Errors   
 
             4        13( 3.3%)   << 
 
  
           (a)   (b)       <-classified as 
          ----  ---- 
           197     3     (a): class extensive 
            10   190    (b): class monoculture 
 
 
        Attribute usage: 
 
            100%  S2REP21April 
              50%  NDVI21April 

Evaluation on test data (1197 cases) 
Evaluation on test data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             4        7( 1.8%)   << 
 
 
       (a)   (b)    <-classified as 
       ----  ---- 
      393     7    (a): class extensive 
                        (b): class monoculture 

Evaluation on test data (400 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             4        8( 2.0%)   << 
 
 
   (a)   (b)    <-classified as 
   ----  ---- 
  180     2     (a): class extensive 
     6   212    (b): class monoculture 
 

 

Evaluation on test data (379 cases): 
 
          Decision Tree    
          ----------------   
          Size      Errors   
 
             4        40(10.6%)   << 
 
 
    (a)   (b)    <-classified as 
    ----  ---- 
                      (a): class extensive 
    40   339    (b): class monoculture 
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6.4.4 Classification maps and accuracy assessment 

Figures 6.16 and 6.17 show the final classification maps for Littenseradiel. For accuracy assessment, 

the maps were compared with the ground truthed vector map for all grassland parcels in 

Littenseradiel using the SCP plugin in QGIS. Results of accuracy assessment are presented in error 

matrices (Tables 6.6 and 6.8). Maps showing the classification errors are included in Appendix F.  

Calculation of the Kappa coefficient or KHAT statistic  is based on the error matrix; it is used to assess 

whether difference between images is due to chance or to real (dis)agreements. True agreement will 

approach 1 and chance agreement approaches 0 (Lillesand et al. 2015). It can also be used to 

compare classification accuracy between the two used methods. Table 6.4 gives an interpretation of 

the KHAT value (Bogoliubova and Tymków 2014).  

 Different measures of accuracy are presented. Overall accuracy is calculated as the total 

number of correctly categorized pixels divided by the total number of pixels. Producer's accuracy is 

the number of correctly classified pixels for each class divided by the total number of pixels for that 

class in the reference raster. User's accuracy is the number of correctly classified pixels for each class 

divided by the total number of pixels for that class in the classified raster (Lillesand et al. 2015). 

 
Table 6.4: Interpretation of KHAT value (after Bogoliubova and Tymków 2014). 

Value of Kappa (hat) Interpretation of agreement 

0.81 ≤ K (hat) ≤ 1 Almost perfect agreement 

0.61 ≤ K (hat) ≤ 0.80 Substantial agreement 

0.41 ≤ K (hat) ≤ 0.60 Moderate agreement 

0.21 ≤ K (hat) ≤ 0.40 Fair agreement 

0.0 ≤ K (hat) ≤ 0.20 Slight agreement 

K (hat) < 0 Poor agreement 

 

Statistical rule-based classification 

Table 6.5 gives the total area for extensive and monoculture grassland for Littenseradiel based on  

the statistical rule-based classification (4 observation dates, 5 attributes). 69.7% of the pixels are 

classified as intensively managed, monoculture grassland and 30.3% as extensive grassland. Overall 

accuracy is 82.5% and KHAT is 0.59 (Table 6.6). 

 

Contextual rule-based classification 

Table 6.7 gives the total area for extensive and monoculture grassland for Littenseradiel according to 

the contextual rule-based classification (2 observation dates, 2 attributes and mowing threshold). 

69.3% of the pixels are classified as intensively managed, monoculture grassland and 30.7 as 

extensive grassland. Overall accuracy is 84.3% and KHAT is 0.65 (Table 6.8). 
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Figure 6.16: Statistical rule-based classification of grassland for Littenseradiel (4 observation dates). 

 
Table 6.5: Total area for extensive and monoculture grassland according to statistical rule-based classification.  

Classification Nr. of pixels Area (km2) Percentage 

Extensive 330793 33.1 30.3 

Monoculture 761616 76.1 69.7 

Total 1092409 109.2 100 

 
 
Table 6.6: Error matrix, KHAT values, producer's and user's accuracy for statistical rule-based classification. 

Error matrix Reference data (columns) 

Classification (rows) Extensive Monoculture Total (nr. of pixels) 

Extensive 237757 93036 330793 

Monoculture 97804 663812 761616 

Total (nr. of pixels) 335561 756848 1092409 

Overall accuracy = 82.5% Kappa hat = 0.59 

Class Producer's accuracy (%) User's accuracy (%) Kappa hat 

Extensive 70.9 71.9 0.59 

Monoculture 87.7 87.2 0.58 
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Figure 6.17: Contextual rule-based classification of grassland in Littenseradiel (2 observation dates). 

 
Table 6.7: Area for extensive and monoculture grassland in Littenseradiel. 

Classification Nr. of pixels Area (km2) Percentage 

Extensive 335561 33.6 30.7 

Monoculture 756848 75.7 69.3 

Total 1092409 109.2 100 

 

Table 6.8: Error matrix, KHAT, producer's and user's accuracy for contextual rule-based classification (Littenseradiel). 

Error matrix Reference data (columns) 

Classification (rows) Extensive Monoculture Total (nr. of pixels) 

 Extensive 271900 107306 379206 

 Monoculture 63661 649542 713203 

 Total (nr. of pixels) 335561 756848 1092409 

Overall accuracy = 84.3% Kappa hat = 0.65 

Class Producer's accuracy (%) User's accuracy (%) Kappa hat 

Extensive 81.0 71.7 0.59 

Monoculture 85.8 91.1 0.71 

 

Additional validation 

Figure 6.18 shows the contextual rule-based classification map for Littenseradiel with the outlines of 

meadow bird reserves, National Nature Network, agricultural nature management packages and 

locations of organic/bird-friendly farmers. Nearly all grassland pixels within bird reserves are 

classified as extensive. Patches of extensive grassland are also found at organic/bird-friendly farmers, 

for example the parcels of Black-tailed Godwit farmer Murk Nijdam in the 'Súdhoeke' (black arrow) 

and of the neighboring sheep farm. Fields with nest protection are often classified as monoculture 

grassland. 
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Figure 6.18: Additional validation for contextual rule-based classification (non-grassland shown in white; black arrow = 
'Súdhoeke') (Agricultural Nature Management data from: Portaal Natuur en Landschap 2016). 

Conclusion 

Overall accuracy for contextual rule-based classification (84.3%) is slightly higher than for statistical 

rule-based classification (82.5%). KHAT is also higher for contextual rule-based classification, 0.65 

(=substantial agreement) compared to 0.59 (=moderate agreement). These overall accuracies are 

comparable to those found by Franke et al. (2012). Overall accuracy for both methods may be 

underestimated because for many fields, parcel edges are extensively managed, whilst the ground 

truthed vector map is based on discrete values for the whole parcel. 

 In the statistical rule-based classification, misclassification is mainly due to failure to 

recognize monoculture fields that were mown before April 21st. The contextual rule-based 

classification removes most of these errors by applying a mowing threshold. Nevertheless, 

misclassification still occurs because not all mown fields are recognized at this threshold (See section 

7.2.1). Also, the few fields that were cut before April 11th are not recognized and may be 

misclassified as extensive.  

 Misclassification of monoculture as extensive grasslands may also occur for fields that 

contain areas of bare soil, e.g. due to recent re-seeding. Grasslands that have been used for growing 

maize crops in previous years may also be misclassified as extensive grasslands because grass growth 

is slower here. Relatively small fields that are grazed by a large number of animals may also be 

misclassified as extensive grasslands. 

 An additional finding for Littenseradiel is that mean parcel size is 2.72 ha (27227 m2) for 

monoculture grasslands vs. 1.96 ha (19601 m2) for extensive grasslands; also, extensive parcels tend 

to be irregular in shape, whereas monoculture parcels are more symmetrical. It may be an option to 

incorporate parcel geometry for classification. 
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6.4.5 Contextual rule-based classification for South-Central Friesland study area 

Because contextual rule-based classification yields the highest KHAT value and overall accuracy, this 

method was used for classification of the South-Central Friesland study area (Figure 6.19). Here, 

40.3% of the grassland is classified as extensive and 59.7% as monoculture (Table 6.9).  

 The map is further validated by comparing the classification with the outlines of important 

(meadow) bird areas that are part of the National Nature Network (former EHS) as well as the 

database of organic/bird-friendly farmers (Figure 6.20). From this map can be observed that nearly 

all grassland in nature areas is classified as extensive grassland and that concentrations of extensive 

grassland are also found near organic/bird-friendly farmers. Peat soils contain relatively more 

extensive grassland than clay soils. Reason for this may be that these soils are less suitable for 

intensive management because their natural fertility is lower and groundwater levels are higher. 

Table 6.9: Area and percentage of extensive and monoculture grassland for South-Central Friesland study area. 

 Nr. of pixels Area (km2) Percentage 

Extensive 3968080 396.8 40.3 

Monoculture 5880651 588.0 59.7 

Total 9848731 984.8 100 

 

                       
        Figure 6.19: Contextual rule-based grassland classification for South-Central Friesland (Background image from     

        Provincie Fryslân 2017). 
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Figure 6.20 Contextual rule-based classification for study area, compared with location of the National Nature Network 

(EHS) and organic/bird-friendly farmers (Background image from Provincie Fryslân 2016). 
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6.5 Spectral heterogeneity  

To assess spectral heterogeneity for monoculture and extensive grasslands, principal component 

analysis was carried out for April 21st. The first two principal components explain 98.66% of total 

variance (Appendix G). PC1 and PC2 were used to calculate the mean distance to the spectral 

centroid for 5 monoculture and 5 extensive grassland plots of 1 ha in size (Figure 6.21). Plots herbs5 

and mono5 correspond to the areas in Littenseradiel for which biodiversity is known from the 

Nationale databank Flora & Fauna (2017). In mono5, 8 vascular plant species have been counted and 

herbs5 contained 37 vascular plant species. Mean distance to spectral centroid is almost twice as 

high for herbs5 than for mono5 (Table 6.10). For these 10 plots, mean distance to centroid is smaller 

for monoculture than for herb-rich grasslands. But, within the monoculture class as well as within the 

herb-rich class, mean distance shows a wide range. Further research is necessary to test whether 

spectral heterogeneity can be used as a measure for herb-richness; vascular species counts for 1 ha 

plots in extensive grasslands of different categories of herb-richness are required to establish a 

correlation between spectral heterogeneity and species richness. 

Table 6.10: Mean distance to spectral centroid for 10 plots of 1 ha in size (100 pixels). 

 

                       Figure 6.21: Scatterplots showing the mean distance to spectral centroid for 10 different plots of 1 ha. 
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 7.0 Applications for meadow bird conservation 

 

7.1 Grassland types compared to distribution of meadow bird nests 

 

This chapter illustrates the potential use of Sentinel-2 data for meadow bird conservation. First, the 

grassland management intensity map was used to analyze the distribution of nests of lapwing, 

redshank, godwit and oystercatcher in Littenseradiel. Figure 7.1 shows the distribution map for 

godwit nests, larger versions of this map and for the other species are included in Appendix H. Table 

7.1 gives the total number of nests for extensive, monoculture and arable land.  All four species 

prefer extensive grassland over monoculture grassland as nesting site. For godwit and redshank, 

presence of extensive grassland is most important. Lapwings also favor bare lands/croplands over 

monoculture grassland. Nevertheless, still 20% of the combined species breeds on monoculture 

lands. Therefore, protection of their nests and chicks remains essential in these parcels. 

 For all species, it is clearly visible that nests concentrate within bird reserves and on parcels 

of organic/bird friendly farmers. Lapwing nests also concentrate on bare lands/croplands (See 

Appendix H). 

 

 
Figure 7.1: Contextual rule-based classification with distribution of Black-tailed Godwit nest sites for Littenseradiel 2016. 

Total numbers are given for Skrok and Skrins (Nest distribution data for Littenseradiel from: Bond Friese Vogel Wachten 

2016; nr. of territories for Skrok and Skrins from: De Boer and De Winter 2016). 
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Table 7.1: Grassland type vs. distribution of nests in Littenseradiel (2016) for four meadow-bird species. 

 Total nr. of 
nests  for 
2016 

Extensive grassland  
(33.6 km

2
) 

Monoculture grassland 
(75.7 km

2
) 

Other/Arable land 
(2.1 km

2
) 

Nr. of 
nests 

% Nests/km
2
 Nr. of 

nests 
% Nests/km

2
 Nr. of 

nests 
% Nests/km

2
 

Black-tailed 
Godwit 

1150 891 77 26 237 21 3 22 2 10 

Redshank 
 

554 435 79 13 115 21 1 4 0.7 2 

Northern 
Lapwing 

1004 607 60 18 141 14 2 256 26 122 

Oystercatcher 
 

517 293 57 9 161 31 2 63 12 30 

Combined 
species 

3225 2226 69 66 654 20 9 345 11 164 

 

7.2 Detection of mowing and grazing 

7.2.1 Detection of mowing 

Mowing can be detected on Sentinel-2 true color composites using visual inspection (Figure 7.2). 

Distinct differences in color can be seen between parcels that were not cut, that were freshly cut and 

were recently cut (= ca. 7 days before image acquisition date). To be able to create a model that 

allows fast assessment of 1st mowing dates, the influence of mowing on NDVI values was examined. 

For the mowing model, NDVI was preferred over MASD because MASD gives the absolute change, 

making it difficult to discriminate between changes due to mowing or fast grass growth.  

 NDVI values from not mown, freshly mown and recently mown parcels were extracted for 

April 21st and May 8th, using 6 plots of 1 ha in size (200 pixels per category). NDVI values for fields 

that were not cut, show a minimal decrease in NDVI whilst freshly cut fields display a mean drop in 

NDVI of 0.47 (Figure 7.3). Mean drop in NDVI for recently cut parcels is 0.21; the minimum drop is 

0.16. Clearly, under the right weather conditions, the vegetation recovers very fast after mowing. 

This observation corresponds with research performed in France, where NDVI values increased to 

'normal' in ca. 15 days (Courault et al. 2010). Based on this knowledge, it is evident that when the 

gap between two observation dates is 15 days or longer, mowing may not be detected. 

Unfortunately, the 2016 Sentinel-2 time series has wide gaps, e.g. 30 days between May 8th and 

June 7th.  

 Despite this limitation, a mowing model was developed based on change in NDVI between 

two consecutive observation dates, using a mowing threshold of  -0.1 (Figure 7.4). This threshold was 

chosen based on trial and error; if -0.16 was used (= the minimum change for recently cut parcels), 

some fields that had been cut, were misclassified as not cut. 

 To test the reliability of this mowing model, all fields in Littenseradiel that showed visual 

evidence of mowing between April 21st and May 8th were counted. In total, 532 fields were mown. 

The model detected 531 of these mown parcels (=99.8%). Between April 11th and April 21st, visual 

inspection detected 131 mown parcels of which 97 were correctly classified by the model (=74%). 

Probably the threshold of -0.1 is too low for this period due to fast grass growth. However, if the 

threshold is raised to e.g. -0.08, intensively grazed parcels are mistaken for mown parcels.   
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Figure 7.2: Sentinel-2 true color composite for May 8th 2016 showing the difference in color between parcels that were 
not mown (dark green), freshly mown (yellow green) and mown ca. 7 days before (light green). 

 

                   
 
Figure 7.3: Differences in NDVI values between April 21st and May 8th for fields that were not mown, freshly mown or 
recently mown. 
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Figure 7.4: Map of Littenseradiel showing detection of mowing based on NDVI change of at least -0.1 between 
observation dates. Only the 1st detection of mowing for each parcel is shown. Non-grassland is shown in black (See 
Appendix I for larger version). 

MODIS 16 day composite EVI time series were successfully used by Lips (2011) to estimate first 

mowing dates for grassland. The model is based on the difference in EVI value between two 

consecutive composites. By applying a mowing threshold of  -0.06 a detection accuracy of 71.4% was 

achieved (Lips 2011). 

 To compare the results for the Sentinel-2 mowing model with MODIS 16 day composite EVI 

data, MODIS13Q satellite imagery was downloaded for the 2016 growing season. MODIS 16 day EVI 

values were extracted for pure grassland pixels of extensive and monoculture parcels, Sentinel-2 

NDVI values were extracted for pixels of the same parcels (Figure 7.5). 

 First detection of mowing for the monoculture parcel is between April 22nd and May 7th 

(median date is April 29th) for the MODIS EVI time series and between April 21st and May 8th for the 

Sentinel-2 NDVI time series. For the extensive parcel, mowing is detected between July 11th and July 

26th (median date is July 18th) for the MODIS EVI time series and between June 7th and July 20th for 

the  Sentinel-2 NDVI time series. This means that for the monoculture parcel, detection of 1st 

mowing date based on Sentinel-2 data, is comparable to the MODIS EVI data. For the extensive 

parcel, the 1st mowing date in ca. half July is also accurately detected, but probably only because 

mowing took place shortly before July 20th. If this parcel had been cut shortly after June 7th, it 

would not have been detected. Due to the wide gaps in the current Sentinel-2 time series, it is not 

yet possible to check precisely whether farmers obey the agreed resting period for parcels under 

agricultural nature management; e.g. no mowing before June 15th, June 22nd or July 1st. When 

Sentinel-2B is active, chances of acquiring cloud free datasets at higher temporal resolution (every 5 

days) increase, which will improve the model. 
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Figure 7.5: Detection of mowing: MODIS EVI 16 day composite time series (median date) vs. Sentinel-2 NDVI time series 
(observation date) for extensive and monoculture parcels. Red arrows = 1st mowing date monoculture parcel, blue 
arrows = 1st mowing date extensive parcel. 

Figure 7.4 shows the first detection of mowing per parcel for Littenseradiel based on a change in 

NDVI of at least -0.1 between two consecutive observation dates. Because Sentinel-2 temporal 

resolution for April to early June is quite good, detection of parcels that were cut for the first time 

early in spring is reliable. But for monoculture parcels with first detection of mowing in September, it 

is to be expected that earlier mowing dates have been missed. However, the map clearly shows the 

difference in mowing dates for monoculture and extensive parcels. Large scale mowing occurred 

between April 21st and May 8th. First mowing activity in bird reserves is detected between June 7th 

and July 20th. 

 Despite its disadvantages, the map does nicely show differences in mowing regime, e.g. 

cutting of strips of grassland in some parcels (Figure 7.7), or parcels where only the edges have been 

cut. The map can also be used to (roughly) detect adequate mowing management. Figure 7.6 shows 

the mowing dates and distribution of meadow bird nests (all 4 species) for some parcels. The white 

arrow points at a parcel that was cut very early, between April 11th and April 21st. In May, 6 nests 

were found here. The second cut was in July, giving the chicks enough time to become fully-fledged. 

Another example of successful mowing management is found at the blue arrow; this is a parcel with 

several bird nests that was cut in July. 
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Figure 7.6: Examples of adequate mowing management to support bird conservation (white and blue arrows). 

 

 
Figure 7.7: Cutting of strips of grassland to feed cattle that are kept indoors, Littenseradiel, April 2017. 
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7.2.2 Detection of grazing 

In the model of Lips (2011), based on MODIS EVI 16 day composites, grazing could not be 

differentiated from mowing. Sentinel-2 NDVI data was used to see whether it is possible to detect 

grazing. NDVI values for April 21st and May 8th were extracted for 2 grazed plots and 2 non-grazed 

plots of 1 ha in size (200 pixels for each class). The grazed plots are intensively grazed by cattle.  

 Non-grazed plots show a slight increase in NDVI whilst grazed plots show a mean drop in 

NDVI value of 0.066 (Figure 7.8). The range in NDVI for parcels grazed between April 21st and May 

8th is wide, with a maximum drop of 0.16. Unfortunately, in the current mowing detection model 

based on NDVI decrease of at least 0.1, pixels in intensively grazed parcels will be therefore mistaken 

for mown parcels. However, upon inspection of the mowing map for Littenseradiel, one can see that 

grazed parcels often display a mixture of colors opposed to a  uniform color for mown parcels (Figure 

7.9). In grazed parcels as opposed to cut parcels, grass of irregular length occurs because patches of 

grass are not grazed (Figure 7.10). 

 

Figure 7.8: Difference in NDVI between April 21st and May 8th for parcels that are grazed by cattle and parcels that were 
not grazed.  
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Figure 7.9: Grazed parcels tend to show a irregular mixture of colors on the mowing map: parcel A is grazed by cattle, 
parcel B by sheep. Inset shows photograph of these parcels from August 2016 (from Google Earth).  

 

 
 

Figure 7.10: Monoculture parcel grazed by cattle showing remaining patches of longer grass, Littenseradiel (April 2017). 
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 8.0 Conclusion/Discussion 

For areas with known distribution of grassland, Sentinel-2 satellite imagery has shown high potential 

for detecting management intensity, which includes fertilizing, mowing and grazing. It is possible to 

create maps that show the extent of intensively managed and extensively managed grasslands at 

parcel level. 

 In springtime, for all spectral bands on both clay and peat soils, mean spectral response for 

extensive grasslands differs significantly from the mean response for monoculture grasslands 

 (p < 0.0001, alpha 0.05 for April 21st)(Figure 6.1). After the 1st mowing event (around May 8th for 

monoculture and after June 7th for extensive grasslands), spectral response patterns show more 

overlap; for some of the spectral bands, differences between monoculture and extensive grassland 

are no longer significant (Appendix J). 

 Local soil type strongly influences spectral response patterns. When comparing clay vs. peat 

soils, it was found that in springtime, mean reflectance values for extensive grassland and 

monoculture grasslands are significantly different (p < 0.0001, alpha 0.05 for April 21st). For accurate 

classification of grassland management intensity in a research area with both clay and peat soils it is 

essential to use training data for both soil types. If only samples for clay soils are used, the threshold 

for the class monoculture will be set too high, causing misclassification of monoculture grassland on 

peat soils. 

 From March 12th to April 21st, reflectance in the red-edge, NIR and SWIR range for 

monoculture grassland on peat soils is lower than for monoculture on clay and reflectance for 

extensive grassland on peat is lower than extensive on clay. This may be caused by differences in soil 

moisture. Low reflectance in B11 is related to high leaf water content (Table 4.1). Higher average 

groundwater levels in peat soil areas slow down grass growth (Figure 4.9). In early spring, vegetation 

cover is less dense on peat soils, especially in extensive grasslands. Because less photosynthetically 

active vegetation is present, reflectance will be lower than for grassland on clay soils. Also, 

background effects of soil moisture and the soil itself may directly decrease reflectance. It is known 

that high organic matter content of peat soils reduces their reflectance (Lillesand et al. 2015). 

 Sentinel-2 spectral bands that display the greatest variability in spectral response for both 

grassland categories are bands 5, 6, 7, 8 and 8A. In springtime, variance in reflectance for extensive 

grasslands is higher than for monoculture grasslands; this reflects the heterogeneous character of 

herb-rich grasslands and the uniform character of intensively managed ryegrass plots. From March 

12th to April 11th, variability also shows a small peak for band 11 for extensive grassland on peat 

soils; this is probably related to differences in soil moisture.  

 The seasonal pattern of the S2REP and NDVI time series is comparable to the grassland 

production curve, showing a peak in May, lower values in July and a second peak in September 

(Appendix C; D). The NDVI time series for extensive grasslands on peat soils shows a delayed onset of 

grass growth with a peak in June, whilst monoculture grasslands reach their peak on April 21st. This 

delay is less pronounced on clay soils. Delayed onset of grass growth on peat soils is caused by higher 

groundwater levels in spring. 

  S2REP, NDVI time series and MASD values were used as input for See5. S2REP, in which 

bands 4, 5, 6 and 7 are used, was found to be the most important attribute for classification of 

grassland management intensity (100%). NDVI was the second most important attribute (50%). An 

advantage of VI's that incorporate red-edge bands, such as the S2REP, is that they are less 

susceptible to saturation than the NDVI in areas with dense vegetation cover (Mutanga and Skidmore 
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2004). Imagery for April 21st was found to be the most important for successful classification. Both 

the S2REP (100%) and NDVI (50%) attributes for this date were essential in the See5 decision tree. 

The MASD parameter was not found to be very useful for classification. See5 did not use it at all, 

unless S2REP and NDVI for April 21st were removed. It should be noted that MASD only describes the 

magnitude of the spectral response and does not give any information on the spectral shape. 

Nevertheless, the MASD maps do give a nice impression of spatiotemporal differences in spectral 

dynamics.   

 Based on these findings it can be concluded that for classification, availability of springtime 

imagery is required, preferably from the second half of April. Other European studies have also 

shown that spectral separability is optimal in April (Nitze et al. 2015) and Franke et al. (2012) 

concluded that availability of imagery before the 1st mowing date, was essential for successful 

classification of grassland management intensity.  

 Two related classification methods were tested: statistical rule-based classification and 

contextual rule-based classification. Accuracy assessment has shown that both classification methods 

performed well. Overall accuracy for contextual rule-based classification (84.3%) is slightly higher 

than for statistical rule-based classification (82.5%). KHAT is also higher for contextual rule-based 

classification, 0.65 (=substantial agreement) compared to 0.59 (=moderate agreement). These overall 

accuracies are comparable to those found by Franke et al. (2012). Overall accuracy may be 

underestimated, because for many fields parcel edges are extensively managed, whilst the ground 

truthed vector map is based on discrete values for the whole parcel. Differences in overall accuracy 

and KHAT can be mainly attributed to the addition of the mowing threshold for the contextual rule-

based classification, through which misclassification of mown parcels is avoided. Despite adding a 

mowing threshold, misclassification of monoculture as extensive grasslands may still occur due to 

recent re-seeding, slower grass growth in fields that have been used for maize crops in previous 

years, fields that are intensively grazed by sheep or cattle and failure to detect mowing. 

 Provided that adequate springtime imagery is available, accurate grassland management 

classification does not necessarily require data for many observation dates. The statistical method 

uses four scenes and the contextual method two. For the contextual rule-based classification, 

availability of data from two consecutive observation dates is essential, preferably at an interval of 

10-15 days, to be able to detect mowing of intensively managed grasslands.  

 The current grassland classification model is based mainly on the S2REP; this vegetation 

index seems to be very useful for detecting grassland management intensity. It is especially sensitive 

to application of liquid manure, which causes the red-edge position to shift to the right due to 

increase of chlorophyll content. This effect of fertilizer application was also found in previous 

research (Sibanda et al. 2017; 2015). Red Edge Position values near 700 nm have been associated 

with low leaf chlorophyll concentration, whilst Red Edge Position values near 725 nm point to high 

leaf chlorophyll concentration (Cho and Skidmore 2006). For monoculture on clay soils the highest 

mean is 727 nm compared to 726 nm for peat soils.  Highest mean value for extensive grassland on 

clay soils is 722 nm compared to 723 nm for peat soils. Here, no liquid manure is used, groundwater 

levels are high and vegetation grows slower in springtime. Nevertheless these S2REP values can still 

be considered quite high, which may be evidence for high nitrogen deposition (eutrophication) 

through air and water pollution; this is problematic in nature areas where it causes loss of 

biodiversity (CLO 2016). 

 The current model reflects grassland management intensity more than true difference in 

species of grasses and herb-richness. It is difficult to separate these parameters because they are 
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strongly related. The narrow range of S2REP and NDVI for intensively managed grassland compared 

to extensive grassland does reflect the homogeneous character of ryegrass monocultures on which 

large amounts of liquid manure are applied. Some fertilized ryegrass fields contain a lot of 

dandelions; this is not recognized by the current model, probably because it has no influence on total 

biomass and chlorophyll content. 

  Differences in herb-richness between extensively managed parcels are not recognized. Most 

of the extensively managed grasslands in bird reserves and at organic farmers belong to the most 

herb-rich type (category 3). But, in Littenseradiel, moderate herb-rich grasslands (category 2) also 

occur. In this thesis, it was investigated whether spectral heterogeneity can be used as a proxy for 

biodiversity. Mean distance to spectral centroid was calculated as a measure of spectral 

heterogeneity. It was found that mean distance to centroid is smaller for monoculture grasslands 

than for herb-rich grasslands. However, it requires further research, preferably in combination with 

vascular species counts in 1 ha plots for category 2 and category 3 grasslands to assess whether this 

measure truly correlates to herb-richness and is significantly different for grasslands of each 

category.   

 According to the contextual rule-based classification for Littenseradiel, 31% of the total 

grassland area is classified as extensive vs. 69% as monoculture. For the South-Central Friesland 

study area, 40.3% of the grassland is classified as extensive and 59.7% as monoculture. The 

classification method can probably be successfully applied for other grassland areas in the 

Netherlands, because most meadow bird grasslands lie on clay or peat soils. However, no thorough 

accuracy assessment was performed for the peat soil area due to lack of time. Therefore, further 

validation of the model is required. 

  The grassland management map can be used to monitor changes in extent of extensively 

managed grasslands, but also to analyze distribution of meadow bird nests. It was found that the 

majority of godwits, lapwings, redshanks and oystercatchers prefers extensive grassland over 

monoculture grassland as nesting site. Especially redshank (79%) and godwit (77%) choose to breed 

on extensive parcels. The distribution maps may contribute to meadow bird conservation because 

they can show for which monoculture parcels it may be wise to apply nest protection or resting 

periods with delayed or very early mowing.  

 With respect to meadow bird conservation, knowledge of first mowing date is also 

important. Sentinel-2 data can be used to establish a mowing model. By using change in NDVI 

between two consecutive observation dates it is possible to detect mowing at parcel level. 

Advantage of using NDVI over S2REP for detection of mowing, is that data for bands 4 and 8 are 

acquired at 10 m resolution, whereas data for bands 5, 6, 7 and 8A are acquired at 20 m resolution. 

Mowing maps based on NDVI will appear more smooth and reveal more detail than maps based on 

S2REP. For detection of mowing, MASD was found to be less useful than NDVI; its absolute values do 

not allow discriminating between fast increase or decrease of reflectance, making it difficult to 

differentiate between mowing, fast grass growth and seasonal differences in moisture content. 

Unfortunately, temporal resolution of Sentinel-2 imagery for 2016 is too low to detect all mowing 

events. Grazing causes a mean drop in NDVI of 0.066 but with a maximum drop of 0.16. By applying a 

mowing threshold of -0.1, grazing may be mistaken for mowing. If Sentinel-2B data is available, 

chances of acquiring cloud free data at higher temporal resolution increase. This will make it possible 

to apply a lower mowing threshold of e.g. smaller than -0.16 which will avoid confusion with grazing. 
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Research recommendations 

Eventually the steps used in the current method, from data download to classification, may be 

combined into a model to automate the classification process. But, before this can be achieved, it is 

necessary to test the robustness of the model using Sentinel-2 data for the current and coming years. 

It may well be that the S2REP and NDVI classification thresholds differ from year to year depending 

on weather conditions. Unfortunately, at the moment of writing no cloud free data was available for 

April 2017. A cloud free Sentinel-2 image was downloaded for March 27th 2017. Mean spectral 

response is comparable to that of April 1st 2016 (Figure 8.1). S2REP values for March 27th 2017 are 

lower than for April 1st 2016 whilst NDVI values are higher. This illustrates that it is important to test 

the validity of the model for other years.  

 

  
                                               

  Figure 8.1: Sentinel-2 Spectral response curve for March 27th 2017. 

The current method incorporates expert knowledge on local grassland management, especially with 

regard to mowing. If the method is to be used in an operational process and applied in study areas 

for which no knowledge of mowing is available, it is essential to have a reliable mowing model. The 

current mowing model may be improved by using Sentinel-1 data in addition to Sentinel-2 data. 

Sentinel-1 is a twin satellite constellation which provides Synthetic Aperture Radar (SAR) data; the 

satellite actively transmits microwave signals and measures the energy that is scattered back by the 

ground surface; presence of clouds will not affect data collection. The Sentinel-1 signal is affected by 

the dielectric constant of materials on the ground as well as by soil moisture and ground surface 

roughness, e.g. vegetation and ploughed fields (ESA 2017g; Wagner et al. 2010). Tamm et al. (2016) 

have used this data to calculate interferometric coherence in relation to mowing events on 

agricultural grasslands. It was found that median VH (vertical transmit, horizontal receive) and VV 

(vertical transmit, vertical receive) polarization coherence values were significantly higher after 

mowing. However, precipitation caused the coherence to decrease. Also, a 6 day temporal resolution 

is required to accurately detect all mowing events. 

 With regard to spectral heterogeneity, further research is necessary to assess if it can be 

used to detect differences in herb-richness for extensive grasslands. Counts of vascular plant species 

in 1 ha plots are required to test whether correlations exist between mean distance to spectral 

centroid and actual number of species. 
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  Appendix A: Nature Network: important (meadow) bird areas 

 

 

1: Skrok 21: Fûgelhoeke 41: Pikesyl 

2: Skrins 22: De Fluezen 42: Allingawier 

3: Lionserpolder 23: Polder de Samenvoeging, De Oarden 43: Hempenserpolder 

4: Makkumer noordwaard 24: Zuiderfennenspolder 44: Zuricher oord 

5: Makkumer zuidwaard 25: Filenspolder 45: Korte Jerden 

6: Koaiwaard 26: Hegewiersterfjild 46: Ysbrechtum 

7: Workumermar 27: Akmaryp blauwgraslanden 47: Zwarte molen/Swaenwert 

8: Workumerwaard 28: Sneekermeer gebied 48: Oosterboorn 

9: Workumer Nieuwland 29: De Alde Feanen 49: Sondeler Leijen 

10: Haanmeer 30: De Burd 50: Soarremoarster polder 

11: Monnikeburenpolder 31: Wyldlannen  

12: Zuidermeerpolder 32: Botmeer  

13: Polders Cornwerd 33: Terherne  

14: Aeltsjemar 34: Witte en Zwarte Brekken  

15: De Ryp 35: Idzegea/De Pine  

16: Blauwhuisterpoelen + Tjesskar 36: Gouden Boaijum  

17: Bocht van Molkwerum 37: Geeuwpolder  

18: Mokkebank 38: Polder Lippenwoude  

19: Huitebuersterbûtenpolder + Steile bank 39: Grutte Brekken  

20: Bancopolder 40: Fiskersbuorren/Lange Hoek  
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  Appendix B: Coincident spectral plots for Littenseradiel  
 
 

 

Coincident spectral plot for April 21st and September 25th 2016 for Littenseradiel (clay soil) sample points. Boxes show 
1st quartile, median, 3rd quartile; Whiskers show 2 x plus and 2 x minus standard deviation. 
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  Appendix C: NDVI Seasonal variability 

 
 

Seasonal variability of NDVI for Littenseradiel (clay soils).  
  
 

 
 

 Seasonal variability of NDVI for Grouw (peat soils). 

 



108 
 

  Appendix D: S2REP Seasonal variability 

 

Seasonal variability of S2REP for Littenseradiel (clay soils). 
 

 

Seasonal variability of S2REP for Grouw (peat soils). 
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  Appendix E: MASD Total (April-September) 

 

 

 

 MASD7_total (April - September) for South-Central Friesland study area. 
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  Appendix F: Error maps (accuracy assessment) 
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Appendix G: Principal component analysis for April 21st 2016 

Principal Component Analysis 21 April 2016 

Covariance matrix 

Bands 2 3 4 5 6 7 8 8A 11 12 

2 0.000634 0.00064 0.000824 0.000675 -0.00034 -0.00079 -0.00084 -0.00079 0.000772 0.000909 

3 0.00064 0.000752 0.000833 0.000908 0.000675 0.000476 0.000567 0.000543 0.001199 0.001075 

4 0.000824 0.000833 0.001167 0.000931 -0.00086 -0.00165 -0.00174 -0.00164 0.00108 0.001329 

5 0.000675 0.000908 0.000931 0.001539 0.00269 0.002898 0.003148 0.003172 0.002506 0.001805 

6 -0.00034 0.000675 -0.00086 0.00269 0.020041 0.026696 0.028332 0.027962 0.007113 0.00232 

7 -0.00079 0.000476 -0.00165 0.002898 0.026696 0.036345 0.038447 0.037909 0.008591 0.002316 

8 -0.00084 0.000567 -0.00174 0.003148 0.028332 0.038447 0.041764 0.040186 0.009269 0.002574 

8A -0.00079 0.000543 -0.00164 0.003172 0.027962 0.037909 0.040186 0.039701 0.009323 0.002669 

11 0.000772 0.001199 0.00108 0.002506 0.007113 0.008591 0.009269 0.009323 0.005271 0.003366 

12 0.000909 0.001075 0.001329 0.001805 0.00232 0.002316 0.002574 0.002669 0.003366 0.002786 

 

Correlation matrix 

Bands 2 3 4 5 6 7 8 8A 11 12 

2 1 0.927338 0.958237 0.684101 -0.09616 -0.16554 -0.16252 -0.15845 0.422476 0.68423 

3 0.927338 1 0.889026 0.844248 0.173877 0.091041 0.101184 0.099445 0.602287 0.742989 

4 0.958237 0.889026 1 0.694864 -0.17864 -0.25327 -0.24963 -0.24152 0.435596 0.737198 

5 0.684101 0.844248 0.694864 1 0.484466 0.387448 0.392663 0.405811 0.87983 0.871774 

6 -0.09616 0.173877 -0.17864 0.484466 1 0.989154 0.9793 0.991301 0.692039 0.310479 

7 -0.16554 0.091041 -0.25327 0.387448 0.989154 1 0.986804 0.997954 0.620679 0.23017 

8 -0.16252 0.101184 -0.24963 0.392663 0.9793 0.986804 1 0.986903 0.624677 0.238663 

8A -0.15845 0.099445 -0.24152 0.405811 0.991301 0.997954 0.986903 1 0.64444 0.253804 

11 0.422476 0.602287 0.435596 0.87983 0.692039 0.620679 0.624677 0.64444 1 0.878421 

12 0.68423 0.742989 0.737198 0.871774 0.310479 0.23017 0.238663 0.253804 0.878421 1 

 

Eigen vectors 

Bands Vector_2 Vector_3 Vector_4 Vector_5 Vector_6 Vector_7 Vector_8 Vector_ 
8A 

Vector_ 
11 

Vector_ 
12 
12 2 0.009036 -0.22849 0.397791 -0.19015 0.201618 -0.01661 0.360133 -0.10506 0.122447 0.7461 

3 -0.00943 -0.25093 0.453924 -0.19241 -0.05382 -0.07713 0.169003 -0.10831 0.58681 -0.54808 

4 0.019892 -0.33271 0.384701 -0.18235 0.252554 -0.09621 -0.01509 0.062297 -0.74056 -0.28651 

5 -0.04539 -0.36447 0.161087 -0.12313 -0.47137 -0.16313 -0.69689 0.160048 0.070717 0.242727 

6 -0.37672 -0.07439 -0.07312 -0.28916 -0.59929 0.431452 0.404167 0.133682 -0.19071 -0.02634 

7 -0.50876 0.102211 -0.04581 -0.34466 0.318917 0.306135 -0.37495 -0.52205 0.035626 -0.00369 

8 -0.54324 0.094343 0.418191 0.71797 -0.05788 -0.00197 -0.0024 -0.00071 -0.04347 0.019274 

8A -0.53236 0.055318 -0.21099 -0.26295 0.230928 -0.54014 0.09538 0.484673 0.103892 -0.0004 

11 -0.12869 -0.57044 -0.4348 0.218266 -0.10853 -0.34162 0.193471 -0.50167 -0.05844 -0.0184 

12 -0.03922 -0.53661 -0.21418 0.209156 0.375714 0.519214 -0.07339 0.413218 0.183012 -0.02276 

 

PC Eigen values Accounted variance Cum. variance PC Eigen values Accounted variance Cum. variance 

1 0.13953 93.02001 93.02001 6 7.57E-05 0.050487 99.91038 

2 0.008457 5.638034 98.65805 7 5.94E-05 0.039622 99.95 

3 0.000798 0.531954 99.19 8 3.64E-05 0.024286 99.97429 

4 0.000719 0.47946 99.66946 9 2.38E-05 0.015841 99.99013 

5 0.000286 0.190434 99.8599 10 1.48E-05 0.00987 100 
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Appendix H: Distribution of 2016 meadow-bird territories/nests vs. grassland management 

 

 

Black-tailed Godwit nest distribution vs. grassland management (Nest distribution data for Littenseradiel from: Bond 
Friese Vogel Wachten 2016; nr. of territories for Skrok and Skrins from: De Boer and De Winter 2016). 
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Redshank nest distribution vs. grassland management (Nest distribution data for Littenseradiel from: Bond Friese Vogel 
Wachten 2016; nr. of territories for Skrok and Skrins from: De Boer and De Winter 2016). 
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Oystercatcher nest distribution vs. grassland management (Nest distribution data for Littenseradiel from: Bond Friese 
Vogel Wachten 2016; nr. of territories for Skrok and Skrins from: De Boer and De Winter 2016). 
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Northern Lapwing nest distribution vs. grassland management (Nest distribution data for Littenseradiel from: Bond 
Friese Vogel Wachten 2016; nr. of territories for Skrok and Skrins from: De Boer and De Winter 2016). 
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  Appendix I:  Mowing map for Littenseradiel 
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  Appendix J:  Statistics 
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p-values for Mann-Whitney U test (compare mean reflectance)(alpha=0.05) 
Band 
nr. 

Clay ext vs. 
Clay mono 

Peat ext vs. 
Peat mono 

Clay ext vs.  
Peat ext 

Clay ext vs.  
Peat mono 

Clay mono vs.  
Peat mono 

Clay mono vs. 
Peat ext 

March 12th 2016 

2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.354 < 0.0001 

3 0.002 0.011 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

4 < 0.0001 < 0.0001 0.162 < 0.0001 0.154 < 0.0001 

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6 < 0.0001 < 0.0001 < 0.0001 0.136 < 0.0001 < 0.0001 

7 < 0.0001 < 0.0001 < 0.0001 0.000 < 0.0001 < 0.0001 

8 < 0.0001 < 0.0001 < 0.0001 0.005 < 0.0001 < 0.0001 

8A < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

11 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

12 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.612 < 0.0001 

April 1st 2016 

2 < 0.0001 < 0.0001 0.862 < 0.0001 < 0.0001 < 0.0001 

3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.028 

4 < 0.0001 < 0.0001 0.128 < 0.0001 0.001 < 0.0001 

5 < 0.0001 0.014 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6 < 0.0001 < 0.0001 < 0.0001 0.251 < 0.0001 < 0.0001 

7 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

8 < 0.0001 < 0.0001 < 0.0001 0.023 < 0.0001 < 0.0001 

8A < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

11 0.734 < 0.0001 0.325 < 0.0001 < 0.0001 0.331 

12 < 0.0001 0.004 0.013 < 0.0001 < 0.0001 < 0.0001 

April 11th 2016 

2 < 0.0001 < 0.0001 0.523 < 0.0001 < 0.0001 < 0.0001 

3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

4 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6 < 0.0001 < 0.0001 < 0.0001 0.008 < 0.0001 < 0.0001 

7 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

8 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

8A < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

11 < 0.0001 0.476 0.005 < 0.0001 < 0.0001 < 0.0001 

12 < 0.0001 < 0.0001 0.017 < 0.0001 < 0.0001 < 0.0001 

April 21st 2016 

2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

4 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.288 < 0.0001 

7 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

8 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

8A < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

11 < 0.0001 < 0.0001 0.001 < 0.0001 < 0.0001 < 0.0001 

12 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

May 8th 2016 

2 < 0.0001 0.304 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

3 < 0.0001 0.177 0.058 < 0.0001 < 0.0001 < 0.0001 

4 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.001 

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.422 < 0.0001 

7 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.000 < 0.0001 

8 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.088 < 0.0001 

8A < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.416 < 0.0001 

11 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

12 < 0.0001 0.002 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
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p-values for Mann-Whitney U test (compare mean reflectance)(alpha=0.05) 
Band 
nr. 

Clay ext vs. 
Clay mono 

Peat ext vs. 
Peat mono 

Clay ext vs.  
Peat ext 

Clay ext vs.  
Peat mono 

Clay mono vs.  
Peat mono 

Clay mono vs. 
Peat ext 

June 7th 2016 

2 < 0.0001 < 0.0001 0.879 < 0.0001 0.000 < 0.0001 

3 < 0.0001 < 0.0001 0.946 < 0.0001 < 0.0001 < 0.0001 

4 < 0.0001 < 0.0001 0.111 < 0.0001 0.740 < 0.0001 

5 < 0.0001 < 0.0001 < 0.0001 0.004 0.052 < 0.0001 

6 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.374 

7 < 0.0001 0.000 < 0.0001 < 0.0001 < 0.0001 0.478 

8 < 0.0001 0.001 < 0.0001 < 0.0001 0.000 0.316 

8A < 0.0001 0.007 < 0.0001 < 0.0001 < 0.0001 0.065 

11 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.059 < 0.0001 

12 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.188 < 0.0001 

July 20th 2016 

2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.188 < 0.0001 

3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.801 < 0.0001 

4 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.001 < 0.0001 

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.004 < 0.0001 

6 < 0.0001 0.001 0.000 0.774 < 0.0001 < 0.0001 

7 < 0.0001 < 0.0001 0.032 0.004 < 0.0001 < 0.0001 

8 < 0.0001 < 0.0001 0.134 0.013 < 0.0001 < 0.0001 

8A < 0.0001 < 0.0001 0.375 0.001 < 0.0001 < 0.0001 

11 < 0.0001 < 0.0001 0.089 < 0.0001 < 0.0001 < 0.0001 

12 < 0.0001 < 0.0001 0.857 < 0.0001 < 0.0001 < 0.0001 

September 8th 2016 

2 < 0.0001 < 0.0001 0.001 < 0.0001 < 0.0001 0.223 

3 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.001 

4 < 0.0001 < 0.0001 0.003 < 0.0001 < 0.0001 0.001 

5 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.000 < 0.0001 

6 0.909 0.001 0.006 0.490 0.537 0.004 

7 0.001 < 0.0001 0.043 < 0.0001 0.695 < 0.0001 

8 0.005 < 0.0001 0.010 0.003 0.983 < 0.0001 

8A 0.001 < 0.0001 0.014 0.000 0.947 < 0.0001 

11 < 0.0001 < 0.0001 0.038 < 0.0001 0.691 < 0.0001 

12 < 0.0001 < 0.0001 0.043 < 0.0001 0.672 < 0.0001 

September 25th 2016 

2 0.003 0.016 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

3 0.320 0.407 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

4 < 0.0001 0.036 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

5 < 0.0001 0.001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

6 < 0.0001 0.272 0.079 0.479 < 0.0001 < 0.0001 

7 < 0.0001 0.053 0.575 0.174 0.001 < 0.0001 

8 < 0.0001 0.060 0.875 0.088 0.026 < 0.0001 

8A < 0.0001 0.095 0.814 0.172 0.001 < 0.0001 

11 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.193 

12 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.000 
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  Appendix K: Decision rules used for classification in QGIS 

Statistical rule-based classification: 

1;"raster5" <= 724.0084; "raster3" <= 721.8442 

2;"raster5" <= 724.0084; "raster3" > 721.8442; "raster5" > 722.8615 

1;"raster5" <= 724.0084; "raster3" > 721.8442; "raster5" <= 722.8615; "raster1" <= 722.9341 

2;"raster5" <= 724.0084; "raster3" > 721.8442; "raster5" <= 722.8615; "raster1" > 722.9341 

2;"raster5" > 724.0084; "raster4" > 0.9278637 

1;"raster5" > 724.0084; "raster4" <= 0.9278637; "raster5" <= 724.6226 

1;"raster5" > 724.0084; "raster4" <= 0.9278637; "raster5" > 724.6226; "raster2" <= 0.01505 

2;"raster5" > 724.0084; "raster4" <= 0.9278637; "raster5" > 724.6226; "raster2" > 0.01505 

(class 1 = extensive; class 2 = monoculture; raster 1 = S2REP 25 September; raster 2 = MASD 21 April- 

8 May; raster 3 = S2REP 8 September; raster 4 = NDVI 21 April; raster 5 = S2REP 21 April)  

Contextual rule-based classification: 

2;"raster3" <= -0.1 

1;"raster2" <= 724.0084 

2;"raster1" > 0.9278637 

2;"raster2" > 724.6226 

1;"raster2" <= 724.6226 

(class 1 = extensive; class 2 = monoculture; raster 1 = NDVI 21 April; raster 2 = S2REP 21 April; raster 

3 = NDVI 11 April - 21 April) 


