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TEN GELEIDE

Om de bevindingen uit de studie ook met (model-) experts van buiten Nederland te kunnen 

delen, en daar eventueel inhoudelijke discussie met hen over te kunnen voeren, is de tekst in 

het Engels opgesteld. 

“Statistical estimation of muskrat abundance. Door Emiel E. van Loon, Ronald C. Ydenberg en Daan Bos. 

A&W-rapport 2382

Universiteit van Amsterdam/Altenburg & Wymenga ecologisch onderzoek, Amsterdam/Feanwâlden”

De combinatie van velddata en een dynamisch populatiemodel onderbouwen dat de 

vangstinspanning een van de belangrijkste factoren is om de variatie in gevangen 

aantallen muskusratten te kunnen verklaren. Bij voldoende inzet zal de bestrijding van 

muskusratten leiden tot lagere aantallen muskusratten. Het gebruik van het model zal 

een efficiëntere inzet van bestrijdingsorganisaties tot gevolg hebben.

Dit zijn de belangrijkste resultaten van de veldproef muskusratten die onder de auspiciën van 

de Unie van Waterschappen in de periode 2013-2015 is uitgevoerd en de ontwikkeling van 

een dynamisch populatiemodel in opdracht van STOWA. Hierbij is voortgebouwd op eerdere 

statistische analyses van de gegevens uit de landelijke vangstregistratie van de muskusratbe-

strijding. Alles wijst erop dat het aantal muskusratten in Nederland momenteel relatief laag is.

Om een populatie stabiel te houden is het zaak om de natuurlijke aanwas af te vangen. Die 

aanwas is afhankelijk van het aanwezige populatieniveau. Het is om die reden aannemelijk 

dat er minder inspanning nodig is om een lage populatie stabiel te houden dan een middel-

grote of grote populatie. De modeluitkomsten zijn hiermee in overeenstemming. De para-

meterschattingen in deze studie wijzen er verder op dat uitwisseling (migratie) tussen atlas-

blokken (5*5 km) niet verwaarloosd kan worden.

Het ontwikkelde model kan de bestrijding voorzien van een gedetailleerd stuk gereed-

schap om op gebiedsniveau de gevolgen van een verandering in de bestrijdingsintensiteit 

van bestrijding op het populatieniveau te bepalen. Daarnaast kunnen de objectieve aantals-

schattingen gebruikt worden om de relatie te onderzoeken tussen aantallen muskusratten en 

schade door graverij. Gezamenlijk is deze informatie niet alleen buitengewoon nuttig in het 

publieke debat over de bestrijding, maar ook bij een beter onderbouwde en meer bedrijfsma-

tige uitvoering daarvan.

Het onderzoek dat STOWA, Unie, de waterschapslaboratoria en de bestrijdingsorganisaties 

samen uitvoeren naar het mogelijke gebruik van eDNA in het oppervlaktewater zal die onder-

bouwing nog beter maken.

Joost Buntsma

Directeur STOWA
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SAMENVATTING

Vanuit maatschappelijk, bestuurlijk en biologisch oogpunt, is het wenselijk om inzicht te 

krijgen in de ontwikkelingen van populaties Muskusratten onder verschillende scenario’s 

van beheer. De Unie van Waterschappen voert daarom een onderzoeksprogramma uit waarin 

op wetenschappelijke wijze noodzakelijke (veld-)kennis wordt verzameld. Als onderdeel van 

dit programma is in deze deelstudie een populatie dynamisch model gemaakt, waarbij is 

voortgebouwd op een eerdere statistische analyse van de gegevens uit de vangstregistratie van 

de muskusrattenbestrijding.

De modelstudie waarvan in dit document verslag wordt gedaan moet ook in het licht worden 

gezien van de Landelijke Veldproef Muskusratten. Deze veldproef is uitgevoerd van 2013-2015 

door de Unie van Waterschappen samen met ecologisch adviesbureau Altenburg & Wymenga, 

WUR, de Zoogdiervereniging en H&k Waterkeringbeheer. De gewenste modeluitkomsten uit 

deze studie helpen om de metingen aan schade uit de veldproef nader te interpreteren en 

daarmee de waarde van de veldproef verder vergroten.

De model studie beoogde de data uit het vangstregistratiesysteem te benutten om:

1 het effect van bestrijding op populatieomvang te schatten,

2 de inspanning te bepalen die nodig is om een populatie omlaag te brengen of op een bepaald 

niveau te behouden, en 

3 de populatieniveaus voor een groot aantal gebieden, ten minste de 117 atlasblokken uit de 

landelijke veldproef, objectief te bepalen. 

De methode berust op een vergelijking van een viertal modellen die de populatie-dynamiek 

van de Muskusrat beschrijven en in complexiteit van elkaar verschillen. Gezocht is naar het 

best passende model bij de beschikbare gegevens, de landelijke vangstregistratiedata. Hierbij 

is een schattingsprocedure benut die bekend staat als het Kalman filter. In vergelijking met 

eerdere modellen aan muskusratten populaties in Nederland is in de onderhavige studie een 

veel groter ruimtelijk en temporeel detail niveau gekozen. Hierdoor zijn de beschikbare gege-

vens beter benut en is de toepassing voor de praktijk vergroot. 

Het model dat uiteindelijk is geselecteerd als best passend bij de data maakt voor de voorspel-

lingen gebruik van gegevens op atlasblok-niveau, tijdstappen van vier seizoenen per jaar en 

een vangstvergelijking waarbij de vangst toeneemt met de inspanning, maar ook afhangt van 

populatie dichtheid. Dichtheidsafhankelijkheid speelt een rol in het model.

De belangrijkste bevindingen uit de analyse zijn dat vangstinspanning - in termen van tijd- 

één van de belangrijkste factoren is om de variatie in vangst te kunnen verklaren. Bestrijding 

kan leiden tot lagere aantallen muskusratten, mits de inzet voldoende groot is. 

Een tweede belangrijke bevinding is dat alles er op wijst dat de aantallen muskusratten in 

Nederland momenteel relatief laag zijn. Over de gehele studie periode gezien is de omvang 

van de populatie in 2015 het laagst.

Om een populatie stabiel te houden is het zaak om de natuurlijke aanwas af te vangen. Die 

aanwas is afhankelijk van het aanwezige populatie niveau. Het is om die reden aannemelijk 
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dat er minder inspanning nodig is om een lage populatie stabiel te houden dan een middel-

grote of grote populatie en de modeluitkomsten zijn daar mee in overeenstemming. De 

parameterschattingen in deze studie wijzen er verder op dat emigratie en immigratie niet 

verwaarloosd moeten worden. Dit heeft gevolgen voor de ruimtelijke schaal waarop eventuele 

bestrijding georganiseerd moet zijn om effectief te wezen. 

De uitkomsten van het model dienen met zorg te worden bediscussieerd en beoordeeld, in 

het bijzonder waar het gaat om de interpretatie en de verdere toepassing er van. Biologisch 

inhoudelijk levert het aanknopingspunten om de muskusratten populatiedynamica beter te 

begrijpen. Statistisch gezien is het een stap voorwaarts in het terug-reconstrueren van popu-

latie-omvang bij zoogdieren. De modellering in deze studie is een belangrijke stap vooruit 

maar is niet het eindpunt. In de aannames en modellen zijn verdere verbeteringen mogelijk, 

waarbij samenwerking met experts van vanuit de bestrijding en van buiten de wereld van 

Muskusratten zeer gewenst is. 

Twee voor de hand liggende verdere stappen zijn:

a het uitleggen van de modellen en de belangrijkste bevindingen aan bestrijders en manage-

ment van de waterschappen en bestrijdingsorganisaties, om met hen de sterke en zwakke 

punten van het model te leren kennen;

b een analyse en interpretatie van de correcties in ruimte en tijd die iedere tijdstap en in ieder 

atlasblok gemaakt zijn door het Kalman filter.

Het model voorziet de bestrijding van een gedetailleerd gereedschap om op gebiedsniveau de 

gevolgen van verandering in intensiteit van bestrijding op het populatieniveau te bepalen. 

Daarnaast kunnen de objectieve aantalsschattingen gebruikt worden om de relatie te onder-

zoeken tussen aantallen en schade door graverij. Gezamenlijk is deze informatie niet alleen 

buitengewoon nuttig in het publieke debat over de bestrijding, maar ook bij een beter onder-

bouwde en meer bedrijfsmatige uitvoering daarvan. 
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DE STOWA IN HET KORT

STOWA is het kenniscentrum van de regionale waterbeheerders (veelal de waterschappen) in 

Nederland. STOWA ontwikkelt, vergaart, verspreidt en implementeert toegepaste kennis die 

de waterbeheerders nodig hebben om de opgaven waar zij in hun werk voor staan, goed uit te 

voeren. Deze kennis kan liggen op toegepast technisch, natuurwetenschappelijk, bestuurlijk-

juridisch of sociaalwetenschappelijk gebied. 

STOWA werkt in hoge mate vraaggestuurd. We inventariseren nauwgezet welke kennisvragen 

waterschappen hebben en zetten die vragen uit bij de juiste kennisleveranciers. Het initiatief 

daarvoor ligt veelal bij de kennisvragende waterbeheerders, maar soms ook bij kennisinstel-

lingen en het bedrijfsleven. Dit tweerichtingsverkeer stimuleert vernieuwing en innovatie. 

Vraaggestuurd werken betekent ook dat we zelf voortdurend op zoek zijn naar de ‘kennis-

vragen van morgen’ – de vragen die we graag op de agenda zetten nog voordat iemand ze 

gesteld heeft – om optimaal voorbereid te zijn op de toekomst. 

STOWA ontzorgt de waterbeheerders. Wij nemen de aanbesteding en begeleiding van de geza-

menlijke kennisprojecten op ons. Wij zorgen ervoor dat waterbeheerders verbonden blijven 

met deze projecten en er ook 'eigenaar' van zijn. Dit om te waarborgen dat de juiste kennis-

vragen worden beantwoord. De projecten worden begeleid door commissies waar regionale 

waterbeheerders zelf deel van uitmaken. De grote onderzoekslijnen worden per werkveld 

uitgezet en verantwoord door speciale programmacommissies. Ook hierin hebben de regio-

nale waterbeheerders zitting.

STOWA verbindt niet alleen kennisvragers en kennisleveranciers, maar ook de regionale 

 waterbeheerders onderling. Door de samenwerking van de waterbeheerders binnen STOWA 

zijn zij samen verantwoordelijk voor de programmering, zetten zij gezamenlijk de koers uit, 

worden meerdere waterschappen bij één en het zelfde onderzoek betrokken en komen de 

resultaten sneller ten goede van alle waterschappen. 

De grondbeginselen van STOWA zijn verwoord in onze missie:

Het samen met regionale waterbeheerders definiëren van hun kennisbehoeften op het gebied van het 

waterbeheer en het voor én met deze beheerders (laten) ontwikkelen, bijeenbrengen, beschikbaar maken, 

delen, verankeren en implementeren van de benodigde kennis.
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1 
INTRODUCTION

1.1 ESTIMATING MUSKRAT ABUNDANCE FROM CATCH-EFFORT DATA

The estimation of animal abundance from catch-effort data is a difficult but promising 

field. The method would enable valuable objective estimates for species with specific aims 

in conservation or pest-management. Efforts for reconstructing population size this way 

are well known in fisheries biology1 (Lassen & Medley 2000), and the methodology has to a 

limited extent been applied to small (Broms et al. 2010; Skalski et al. 2011; Gast et al. 2013) and 

large game and/or other mammals (Novak et al. 1991; Schmidt et al. 2005; Ueno et al. 2009). 

In most cases the procedure requires information on age-structure in the harvest. Reed and 

Simons (1996a; b) suggest a method that is not dependent on age structure and so do Matis et 

al. (1996; 1999) and Bos et al. (2009, 2010). 

Matis et al. (1996) analysed muskrat trapping data from 1969-1991 at the level of whole 

provinces for the Netherlands, with a stochastic Birth-Death Migration model. Similar 

data now exist for muskrats in the Netherlands in an even more elaborate dataset, with 

information on catch and effort by professional trappers on a national scale, but with detailed 

grain. With these data, aggregated to yearly levels, Bos et al. (2009) tested the hypothesis that 

muskrat population size could be reconstructed at a local level. The aim is to estimate current 

population sizes and to judge whether local population levels in the Netherlands are regulated 

by trapping under the current harvest rates. Bos et al. (2009) indeed managed to do so, but 

only in about half the number of datasets the models converged. They argued that successful 

convergence, the precision and the accuracy of the population back-casts will possibly be 

enhanced by taking into account seasonality, age –structure or spatial context. Besides, they 

advised to quantify accuracy with more direct methods that estimate population levels.

1.2 MUSKRAT CONTROL IN THE NETHERLANDS

This type of modelling is functional within the applied context of the existing programme for 

muskrat control in the Netherlands. Details of this control programme are given in Barends 

(2002) and van Loon et al. (2017). Bos et al. (2016) argue that muskrat control can affect muskrat 

population size, and provide evidence for this from theory, practice and historical data. They 

elaborate upon the factors that contribute to effective population control, amongst which 

the amount of effort. Nonetheless, given the strong public debate on the matter (Zandberg, 

de Jong & Kraaijeveld-Smit 2011), it would be helpful to have additional information on the 

effect of catch effort on population size, and the catch effort required to maintain a given 

population size. Such information may be provided by the models that are subject of this 

paper. 

1 SCA-models statistical Catch at Age; CPUE Catch per Unit Effort; Statistical Population Reconstruction and Virtual 

Population Analysis.
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1.3 LARGE FIELD EXPERIMENT

Recently a large scale management experiment was performed in the Netherlands to study 

the effect of manipulating harvest intensity of muskrat (catching effort, or time invested 

trapping,) on potential and actual damage of dikes and waterfronts. The experiment took 

place during the years 2013-2015 in 117 areas (5*5 km ‘atlas squares’) selected in a stratified 

random way. Aim of the experiment was to obtain insight into the costs and benefits of 

harvesting at different levels of intensity for different seasons, landscapes and population 

densities, as well as to gauge the publicly acceptable level of damage per region of interest. 

These aspects are identified as the major gaps in knowledge that hamper proper policy 

making for muskrat management at the moment. The background of the field experiment 

is described in a theoretical paper on population dynamics of muskrats in the Netherlands 

(Bos & Ydenberg 2011). During the study experimental variation was created in possibly one 

of the most influential independent variables (time invested), and additional information 

was gathered on sex ratio, age of muskrats caught and –in a limited number of atlas 

squares- population level. Non-biological data collected within the framework of this field 

experiment comprise systematic measurements of damage to dikes and banks in the 117 

experimental atlas squares. The latter data will have value to illustrate a presumed relation 

between damage by burrowing and muskrat population density, if objective estimates of 

density could be obtained. Against this back-ground, the recent field experiment provided 

additional motivation to elaborate upon the models discussed above: a functional model has 

the potential to enhance the information gain from the experiment, if only because it would 

enable us to relate frequency of muskrat damage to muskrat population size. 

1.4 AIM

We aim to elaborate upon the Statistical Population Reconstruction initiated for muskrat by 

Matis et al. (1996) and Bos et al. (2009), by formulating models that capture the essence of the 

dynamics. On the fundamental side our aim is to move forward with these techniques for 

estimating animal abundance and other relevant population parameters. On the applied side 

we aim to quantify to what extent muskrat management is affecting population dynamics, 

and to estimate the parameters of catching efficiency at different population levels and 

landscapes that are required for optimising the muskrat control programme with regard to 

financial, ethical and other (public) considerations. 

The work should lead to an enhanced use of the catch-registration system to estimate:

• the effect of catch effort on population size 

• the required catch effort to reduce a population size to a prescribed level or to maintain 

a given population size 

• the population size in the 117 experimental atlas squares, in order to relate this to muskrat 

damage observed during the large scale field experiment.
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2 
METHODS AND MODELS

2.1 DATA

We have been using the data collected by the Dutch Water Authorities (Unie van Waterschappen, 

UvW) in their catch-registration system. The available catch-registration data comprises the 

number of catches, the catch effort (nr of hours spent per km of waterway) per season and 5 

by 5 km grid squares (henceforth called atlas squares). These data are used to derive relations 

between catch effort (hours per km water way), population size, population density (nr 

individuals per km water way) and number of individuals caught. In this study the data for 

the period 1987 till 2016 are used. The dataset were split into subsets containing (i) 80% of 

the atlas squares used to train the model; and (ii) 20% used to evaluate model performance. 

2.2 MODELS

A set of models, ranging from simple (essentially without ecological dynamics) to more 

complex (including ecological dynamics) was developed, parameterised, calibrated, and 

evaluated on the available data. 

The aim of the models is to predict the catch under different levels of effort as implemented 

by the management. Hence, this relation is explicitly modelled in an observation-equation. 

The ecological dynamics are modelled by a set of difference equations (i.e. the population 

size at a certain point in time in a certain atlas square depends on the population size in 

the previous time period and neighbourhood (i.e. the eight surrounding atlas squares)). The 

temporal resolution in these equations is the season (four seasons per year: winter, spring, 

summer and autumn) and the spatial resolution is an atlas square. Within a single time-step 

redistribution in space is possible from an atlas square to its direct surroundings. 

Models of increasing complexity were evaluated against the simpler counterparts and the 

predictive performance on the evaluation data. The various models evaluated used the same 

population dynamics, but differed with respect to the observation equation, i.e. an equation 

describing the relation between population state variables, model forcing (like effort) and 

catch. The following observation equations were compared:

1 constant catch rate (independent of effort) 

2 catch increasing with population density (independent of effort) to a ceiling

3 catch proportional to effort (independent of population density)

4 catch both increasing with population density to a ceiling and proportional to effort

The corresponding equations are:
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𝑦𝑦𝑘𝑘𝑘=𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑝𝑝𝑑𝑑𝑘𝑘𝑘𝑘
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Where 𝑦𝑦𝑘𝑘 is the predicted catch, 𝑝𝑝𝑑𝑑𝑘𝑘 the muskrat population density (𝑝𝑝𝑑𝑑𝑘𝑘 is the population size
by the suitable habitat (the length of the water-edges in km): 𝑝𝑝𝑑𝑑𝑘𝑘 = 𝑝𝑝𝑘𝑘/𝑠𝑠ℎ), 𝑐𝑐𝑐𝑐𝑐𝑐 the constant
catch rate parameter, 𝑐𝑐𝑐𝑐𝑐𝑐 the maximum catch rate per unit effort at high densities, ℎ𝑐𝑐𝑑𝑑 the 
density at which half the catch rate per unit effort is reached, 𝑐𝑐𝑝𝑝𝑐𝑐 is the average catch rate per 

 (1)

 (2)

 (3)

 (4)
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Where yk is the predicted catch, pdk the muskrat population density (pdk is the population 

size by the suitable habitat (the length of the water-edges in km): pdk=pk/sh), ccr  the constant 

catch rate parameter, cm  the maximum catch (disregarding effort) at high densities, crm 

the maximum catch rate per unit effort at high densities, hcd  the density at which half 

the catch rate per unit effort is reached, cpe  is the average catch rate per unit effort and 

e f f k the catch effort. The parameters are specified globally, i.e. constant for all atlas squares. 

The cpe  parameter was derived by averaging over the term crm pdk–1/(hcd + pdk–1), and the ccr 

parameter was derived by linearising over crm pdk–1/(hcd + pdk–1). 

The population model that provides the estimated population size per season and atlas square 

(pk) is unchanged under these different observation equations and was calibrated while using 

the most extensive equation (4). 

The details of the population model are given in Appendix 1. Birth rate and survival both 

depend on population density and are modelled by second order polynomials.

2.3 LINKING POPULATION MODEL AND OBSERVATION EQUATION TO REALITY

A state estimation procedure is used to generate predictions with the population model and 

observation equations. The specific framework applied here is the ensemble Kalman filter 

(EnKF). This framework allows integration of the information from the realised catch with 

the knowledge about population dynamics in a flexible yet structured manner, and has been 

implemented in comparable ways by e.g. Reed and Simons (1996), Bolker (2007) and Buckland 

et al. (2007).

The EnKF works with an ensemble of predictions from the population model. At the point 

where observations on catch are available, the predicted catch is compared to the realised 

catch and used to update the predicted values. The variability among the ensemble members 

is used to quantify the model prediction uncertainty, which directs the degree to which the 

model results are corrected by the realised catch. The exact implementation of the algorithm 

is described in Appendix 2.

2.4 MODEL CALIBRATION AND EVALUATION

The population model and observation equation are calibrated by using the data from the 

period 2000 to 2010. Initial parameter ranges have been specified based on information from 

other modelling studies on muskrat population dynamics (Bos et al. 2009; Bos & Ydenberg 

2011). These ranges are given in Table 1.
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TABLE 1 INITIAL PARAMETER RANGES, USED FOR MONTE CARLO BASED MODEL CALIBRATION AND FINAL PARAMETER RANGES, USED IN THE MODEL 

SIMULATIONS. ACRONYMS AND MEANING OF EACH PARAMETER IS GIVEN IN TABLE 2, BUT IS ALSO EXPLAINED IN THE MAIN TEXT OR IN 

APPENDIX 1

Initial parameter ranges Final parameter ranges

Parameter Lower bound Upper bound Lower bound Upper bound Chosen value for 

prediction runs

Catch:

crm 1 10 6.3 9.6 7.1

hcd 10 50 10.6 14.7 12

Birth rate:

brmax 3 12 5.5 7.3 6.2

brdec 0.005 0.02 0.008 0.014 0.01

bropt 10 60 16 21 18

Survival rate:

sjmax 0.3 0.8 0.56 0.64 0.6

sjdec 0 0.001 0 0.00016 0.0001

sjopt 10 60 34 41 38

sa 0.6 0.9 0.81 0.84 0.83

Spatial exchange:

erm 0 0.3 0.16 0.23 0.19

hed 0 60 7 16 12

TABLE 2 ACRONYMS, MEANING AND UNITS OF THE MODEL PARAMETERS GIVEN IN TABLE 1 OR IN APPENDIX 1

Parameter meaning unit

ccr constant catch rate fraction

cm maximum catch at high densities n

crm maximum catch rate per unit effort at high densities n/h

hcd density at which half the catch rate per unit effort is reached n/km

cpe catch per unit effort n/h

eff effort spent on catching h

brmax maximum value for birth rate at optimum density n/km

brdec decline in birth rate under suboptimal densities n/km

bropt population density at which birth rate is maximal n/km

sjmax maximum value for juvenile survival at optimum density fraction

sjdec decline in juvenile survival under suboptimal densities fraction

sjopt population density at which juvenile survival is maximal n/km

sa adult survival rate fraction

erm maximum exchange rate of animals moving between patch and surrounding cells fraction

hed population density at which half the maximumexchange rate is reached n/km

2.5 SELECTING THE MOST ADEQUATE MODEL FROM THE ALTERNATIVE OBSERVATION EQUATIONS

The most suitable observation equation (see eq. 1 to 4) is selected based on a comparison 

between realised and predicted catch for the twenty hold-out atlas squares. These were squares 

in which catches were made during the period 1987-2016. The model with the smallest root 

mean squared difference between realised and predicted catch is selected as the model best 

describing the system.
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3 
RESULTS

3.1 THE PERFORMANCE OF DIFFERENT MODELS

The models with the four different observation equations were compared with respect to their 

ability to predict realised catches in the hold-out atlas squares. The results of this comparison 

are shown in Figure 1. The figure shows a tighter relation between predicted and observed 

catch for the model using measurement equation 4 (see the scatter plots as well as the RMSE 

and explained variance). Using this model, 96% of the variance in the catch is explained 

(RMSE: 36), while the next best model (equation 3) explains 87% (RMSE: 37). Applying the 

model involving only density explains 81% of the variance (RMSE: 49). Omitting effort from 

the equation and assuming a constant catch rate leads to a considerable drop in predictive 

power: with model 1, only 66% of the variance can be explained (RMSE: 53). 

FIGURE 1 PREDICTED VERSUS OBSERVED CATCH FOR HOLD-OUT DATA FOR FOUR MODELS. EACH POINT REFERS TO THE CATCH IN ONE SEASON FOR ONE OF 

THE 20 ATLAS-SQUARES. RELATIVELY FEW POINTS FALL OUTSIDE THE RANGE SHOWN HERE (BUT RANGES ARE RESTRICTED TO SHOW SUFFICIENT 

DETAIL IN THE SMALLER END
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Based on this result, we will apply the model with equation 4 as observation equation to 

generate predictions and further evaluation.

3.2 POPULATION RECONSTRUCTION

By applying model 4 to the complete data period (1987 – 2016), we obtained an estimate of 

the population size and a confidence interval around these estimates. Figure 2 shows a time-

series of the predicted total muskrat population. The estimated population size in 1987 was 

2.4 million (averaged over the 4 seasons). It increased to a maximum of 2.9 million in 1993. 

From that year onwards, the numbers declined to reach a level of 0.47 million in 2016. At the 

point where the field experiment started in 2013, the population size was estimated to be 0.56 

million muskrats. The inset demonstrates that the correlation between population size and 

catch is strong below a population size of 0.7 million muskrat (the most recent decade), but 

was much weaker at high population levels (in the early phase of the data-set).

FIGURE 2 PREDICTED MUSKRAT POPULATION SIZE FOR THE NETHERLANDS WITH 0.95 CONFIDENCE BOUNDS. IN THE UPPER-RIGHT PANEL THE RELATION 

BETWEEN POPULATION SIZE AND CATCH IS SHOWN
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Figure 2. Predicted muskrat population size for the Netherlands with 0.95 confidence bounds. 
In the upper-right panel the relation between population size and catch is shown.  
 
Figure 3 shows the seasonal variation of catch (3A) and relative population size (3B) averaged 
over the Netherlands. It shows that the catch peaks in winter and autumn. In contrast, 
estimated population numbers tend to peak in spring while having a low in the autumn (this 

Figure 3 shows the seasonal variation of catch (3A) and relative population size (3B) averaged 

over the Netherlands. It shows that the catch peaks in winter and autumn. In contrast, 

estimated population numbers tend to peak in spring while having a low in the autumn (this 

seasonal pattern is an artefact caused by our implementation of the Kalman filter; we will 

briefly comment upon it in the discussion). 
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FIGURE 3 SEASONAL VARIATION IN CATCH (A) AND RELATIVE POPULATION SIZE (B). THE RELATIVE SEASONAL POPULATION SIZE IS THE POPULATION SIZE 

IN A SEASON DIVIDED BY THE AVERAGE POPULATION SIZE OVER THE ENTIRE YEAR
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Figure 4 highlights the developments in the years 2012 to 2015. It shows very pronounced 

local highs, which are sometimes persistent over long periods (south-west of the country), 

but also decline within a relatively short period (e.g. the region around Zwolle, east of lake 

IJssel). The population predictions at the level of the atlas squares and seasonal time steps are 

available digitally (https://surfdrive.surf.nl/files/index.php/s/Cxu6W2dVaZqNyfC ). 
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FIGURE 4 POPULATION MAPS OF MUSKRATS IN THE NETHERLANDS FOR THE PERIOD 2012 TO 2015 ( VALUES IN 1000 MUSKRATS PER ATLAS SQUARE). THE 

WHITE PATCHES ARE PEAK-VALUES ABOVE THE MAXIMUM VALUE OF THE COLOUR SCALE, WHICH REPRESENTS LESS THAN 10% OF THE POPULATION 

IN THE SPRING PERIOD AND LESS THEN 2% IN THE OTHER SEASONS

Winter Spring Summer Autumn

20
15

20
14

20
13

20
12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3.3 TRAPPING EFFORT REQUIRED TO COMPENSATE FOR GROWTH

The model allows estimation of the required trapping effort to compensate for net population 

growth (i.e. the increment caused by birth and survival, not including spatial exchange and 

catch, step; see Appendix 1, eq. 7b). This required trapping effort is not constant over time as 

it depends, amongst other things, on the population density. In Figure 5 the historical time 

series of trapping effort (‘actual’) is presented in comparison to what was required. It can be 

seen that from 1995 till 1998, and especially from 2003 until 2014 the trapping effort has 

been considerably higher than what was required for compensation. This has, on average, led 

to the more or less continuous population decline presented in figure 2.

Figure 5 also shows the actual trapping effort and population densities for all years in the 

upper right panel of the graph (panel B, selected years 1990, 1995, 2000, 2005, 2010 and 2015 

have been labeled). Panel B emphasizes that -in practice- at low estimated population density, 

a lower effort is required than what was needed to bring the population down. 
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FIGURE 5 THE REQUIRED EFFORT FOR COMPENSATION OF NATURAL GROWTH (‘REQUIRED’) AND ACTUAL YEARLY EFFORT (‘ACTUAL’), AVERAGED OVER THE 

NETHERLANDS. IN THE UPPER-RIGHT PANEL THE RELATION BETWEEN ESTIMATED POPULATION DENSITY AND ACTUAL YEARLY EFFORT IS SHOWN
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3.4 THE RELATIVE IMPORTANCE OF THE VARIOUS COMPONENTS IN RELATION TO SPATIAL EXCHANGE

Apart from natural growth and catch, the model includes a component describing spatial 

exchange. The size of this term is driven by the gradient in local population density (focal 

atlas square relative to its surroundings, appendix 1, eq. 6). Figure 6 shows how the sizes of 

these three components relate to each other. The values of the components were calculated by 

dividing the absolute average yearly value of the components by the average yearly population 

size per atlas square. 

The figure shows that the three components have comparable magnitudes, but do nonetheless 

vary considerably over population density. Striking patterns are the relative importance of 

catch: it is the largest component at intermediate population densities but considerably 

smaller than natural growth at low densities. Furthermore, spatial exchange is the smallest 

component – it increases slightly from 0.06 to 0.07 – but still represents around one third of 

the size of the natural growth. 
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FIGURE 6 SIZE OF DIFFERENT COMPONENTS LEADING TO POPULATION CHANGE AT THE LEVEL OF AN ATLAS SQUARE (FOR THOSE SQUARES WHERE ANIMALS 

WERE PRESENT) DUE TO NATURAL GROWTH (RED), TRAPPING (CATCH, BLUE) AND SPATIAL EXCHANGE BETWEEN ATLAS SQUARES (BLACK). THE 

HORIZONTAL LINES GIVE THE SPREAD OF THE COMPONENTS AT THE LEVEL OF THE INDIVIDUAL ATLAS SQUARES AND THE CIRCLES GIVE THE 

AVERAGES FOR THE NETHERLANDS. THE COMPONENTS ARE SHOWN AT THREE LEVELS OF POPULATION DENSITY: ATLAS SQUARES WITH LESS THAN 2 

ANIMALS PER KM (37% OF THE CASES), 2 – 5 ANIMALS PER KM (23% OF THE CASES) AND MORE THAN 5 ANIMALS PER KM (40% OF THE CASES)
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4 
DISCUSSION

This section discusses the main findings, the reliability of the models presented, the use of 

the models in management, and what needs to be done next. 

4.1 MAIN FINDINGS

The modelling exercise has resulted in a certain number of steps forward: 

1 we now have independent and objective estimates on muskrat numbers per season at a high 

spatial resolution; 

2 we have obtained insight in the degree to which local population levels are regulated by trap-

ping; and 

3 we have estimated the relative importance of immigration and emigration (together, ‘migra-

tion’). 

It appears that trapping indeed regulates numbers: Models that assume catch to be dependent 

upon effort result in a better fit than the same models in which catch is assumed to be 

independent of effort. This is highly relevant since it is one of the basic premises behind 

the muskrat control programme, the other ones being that higher muskrat numbers are 

associated with higher risks for public safety and that these risks can best be averted by 

reducing numbers. The finding is consistent with those in van Loon et al. (2017). 

Migration may be quite substantial. The component describing spatial exchange between 

atlas squares is clearly smaller than catch or natural growth, but still represents around 

one third of the size of natural growth (see Figure 6) when differences in population density 

are high. The process of migration is of interest because of its consequences for spatially 

differentiated management of muskrat. The greater the role of migration, the more costly it 

will be to allow local exceptions to an otherwise uniform strategy of eradication or control 

in space. 

The estimated muskrat numbers are themselves valuable in several ways: they serve to evaluate 

costs of management under different intensities of control, they may be linked to frequency 

of damage by muskrat to dikes and banks (as measured by van Hemert, in Bos et al. 2016), and 

they may be linked to other biological processes such as vegetation development in relation 

to herbivory (c.f. Vermaat, Bos & Van Der Burg 2016). With regard to costs of management 

it is highly interesting that the population continued to decline over the years 2005-2015, 

in spite of a decline in actual effort. Generally, the required effort was estimated to decline 

parallel to a declining population (Figure 5). This corroborates the finding by van Loon et al. 

(2017) that maintaining control becomes progressively cheaper at lower population density. 

Such knowledge of the relationship between costs and population size is a prerequisite for 

the proper calculation of an optimal control strategy (Clark 2010). The model itself can be an 

important tool in the planning of future muskrat control.
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In comparison to previous population back-casts for the same population of muskrat 

(Matis & Kiffe 1999; Bos et al. 2010), the current model is biologically more apt, because it 

includes spatial context, seasonality and age structure. The model is more precise in terms 

of space and time and makes better use of the detailed data available. With regard to age, 

no field data are available as yet at the national scale, so the added value of including it 

in the model is quite limited. However, the inclusion of age structure makes the model 

better prepared for a future situation in which muskrat control is monitored with greater 

precision. 

4.2 RELIABILITY OF MODELS 

Technically there are an infinite number of alternative model formulations possible. This 

number is of course greatly reduced by restricting the options to those that are considered 

‘biologically relevant’ based upon current knowledge of the system. We have tested many 

different alternatives, varying options at parameter level, varying choice of formulae, and 

varying seasonal structure. Out of those we have presented a selected subset in the above2. 

However, given the work process chosen, we have not arrived at systematic evaluation of 

all those model alternatives that we consider relevant. Another reason is that some model 

alternatives did not converge, which means that the calibration procedure did not arrive at 

a suitable set of parameters. There is one relationship in particular that would require more 

rigorous testing in our view. This is the relation describing the nature of density dependence 

in population growth. Therefore, an uncertainty remains whether, perhaps, alternative 

model formulations exist that might have predicted the patterns in realised catch, and the 

underlying parameters and population size, more precise or more accurate than the best 

model presented above.

The reliability of the models that converged has been judged by comparing observed and 

predicted values for a subset of data. This procedure allowed us to rank the models in terms 

of predictive performance. The models clearly differed in that sense, showing that including 

migration, and taking into account trapping effort results in models that better fit the data. 

Nonetheless, the different models all yield similar patterns in space and time in the sense 

that the peak in muskrat numbers in the Netherlands is predicted to coincide with the peak 

in catches and that recent years are characterised by much lower muskrat numbers than the 

previous four decades. 

A qualitative evaluation of the pattern of catches over time results in a strange inconsistency. 

The number of animals is predicted to peak in spring, while numbers should actually 

build up over summer and peak in autumn instead. This phenomenon is the result of the 

Kalman-filter. As is explained in appendix 2, the Kalman filter produces an updated matrix 

of model states each subsequent time-step. The difference between the initial expected values 

and the updated values are called ‘innovations’. It manifests itself, amongst others, as an 

‘immigration’ from abroad. Under the current implementation of the model and this filter 

these innovations tend to artificially affect relative population sizes in the different seasons. 

In our view the innovations are key to a better understanding about those factors or boundary 

conditions that are not yet included in the model. Proper interpretation of the innovations 

should lead to further model improvement. 

2 We learned, for example, that a sub-division into four seasons resulted in models that were easier to both parameterize 

and calibrate than a subdivision in 13 periods (the resolution of the original data).
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A strong correlation was observed between population size and catch below a population size 

of 0.7 million muskrat (the most recent decade), while a much weaker correlation was present 

at high population levels (in the early phase of the data-set). This may entirely be related to 

the fact that the capture process is modelled by a Holling II function (eq. 4, a line increasing 

towards a ceiling), although this is confounded with the possibility that the muskrat control 

organisations were less consistent in data administration or less effective in the early phase 

of the data-set. 

According to the estimated parameter values the movements of muskrat between atlas squares 

is substantial in comparison to net population growth. This is in apparent contrast to findings 

by LaHaye et al. in Bos et al. 2016, who studied muskrat movements in the landscape using 

marked individuals and radio-telemetry. They found that most muskrat were live-trapped and 

finally kill-trapped within their own territory. Less than 30% of the individuals was trapped 

over a distance of more than 500 meter. This is probably to be explained by the fact that the 

time available for marked individuals to actually move before being re-captured was limited 

to less than three months and the majority of individuals in their study were adults that had 

settled already. It is however highly consistent with results obtained from theoretical analysis 

by Matis et al. 1996 and Matis & Kiffe (1999). These authors, when modelling the spread of 

muskrats in 11 provinces in the Netherlands during their invasion from 1968 to 1991, showed 

that stochastic birth-death-migration (BDM) models with migration typically fit the catch 

data better than the corresponding models without migration. 

4.3 THE USE OF THE MODELS IN MANAGEMENT

The general findings of the modelling exercise are of direct relevance for application in 

muskrat management. As mentioned above, they underpin one of the basic premises behind 

the muskrat control programme, that muskrat control leads to lower muskrat numbers. The 

model results are furthermore consistent with the idea that the required trapping effort to 

maintain a given population size declines with population density. This can be interpreted 

as an incentive to strife for very low population sizes or even eradication, rather than 

intermediate population levels in those regions where muskrat population control is chosen 

as the prevalent management tool to maintain public safety.

Ideally, the best models are to be used to compare different scenario’s of management. This 

can and should be done, because it will help to think quantitatively and support management 

decisions in a transparent way. The value of the comparisons will however be much higher if 

the model has been subject to rigorous inspection for validity and robustness first. Especially 

at the extremes of population density, the realm of specific extrapolations and comparisons 

of management scenarios, model results can be quite different depending on the nature of 

the density dependent relationship in population growth that is assumed. There are two 

main alleys for such rigorous inspection. The first is to explain the models and their main 

results to trappers and other staff of the Dutch Water authorities, especially the muskrat 

control organisations. Together with them an inventory of strengths and weaknesses should 

be made as well as a decision which weaknesses are too important to ignore. The second is to 

analyse and interpret the corrections that are made to the model in each time step in each 

atlas square by the Kalman filter (these are the so-called ‘innovations’). The innovations point 

directly at times and places where the model goes wrong, which will surely lead to greater 

understanding.
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4.4 RECOMMENDATIONS

Carefully study the nature and the size of the ‘innovations’, i.e. the corrections made to 

model predictions by the Kalman filter. Try and identify systematic patterns that may be used 

to improve upon the model.

Compare predictions for 2016 made by the current model, calibrated with data until 2015, 

with predictions made by staff of the UvW for that same year.

Use the model to compare scenario’s of management. Design scenario’s that are relevant 

for muskrat control in practice, such as a ‘uniform’ versus a ‘guided’ allocation of effort. 

Illustrate what will happen when effort is diminished too soon and how much effort would 

be required for complete removal. 

It would also be of interest to show the correlation between CPUE (catch per unit effort, in 

Dutch vangsten/uur shortened as v/u) and population size to settle an old discussion about 

the value of the parameter ‘vangsten per uur’.

Acquire technical input (in terms of ICT knowledge) to further optimise the software and its 

design in such a way that multiple biologically relevant models can be compared amongst 

each other in a systematic way. It is also desirable that other people than the designer-group 

can evaluate alternative model formulations.

Quantify which relation between population density and population growth provides the 

best model predictions and identify those models that overall perform best.

Evaluate robustness of the models (are the differences relevant from ecological or management 

perspective?) and perform sensitivity analyses on the best ones (are the model predictions 

particularly sensitive to certain parameters or relationships?

Improve the monitoring of muskrat control by incorporating the age class of animals 

captured. Use the data to both calibrate the model and follow the population developments 

in the field more closely. 

4.5 CONCLUSIONS

In this study, several models were formulated to reconstruct the development of the Dutch 

muskrat population. These models were validated and compared to each other. The results 

from this model validation and comparison yields the following conclusions:

1 Using Statistical Population Reconstruction we succeeded in quantifying muskrat abundance 

and relevant population parameters. The results indicate that current muskrat population 

size is lower than it was in previous decades. The output needs to be judged with caution. 

This is because the measures of error accompanying the output are conditional upon the 

assumption that the underlying models is valid.

2 The results of the modelling exercise are promising, but a systematic comparison of all relevant 

model alternatives has not been achieved. This is because some of the model alternatives we 

tested failed to converge. Nevertheless, global inferences can be made using the model which 

are highly relevant for the policy regarding muskrat control.
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3 The comparison of models indicates that muskrat control affects muskrat numbers: Models 

that assume a dependency of catch on effort result in a better fit than the same models in 

which catch is assumed to be independent of effort 3. 

4 The model results are consistent with the idea that the required catch effort to maintain a 

given population size declines with population density. 

5 According to the estimated parameter values, the movements of muskrat between atlas 

squares cannot be neglected in comparison to net population growth. 

6 Further development of the models is certainly possible and worthwhile from a management 

and a scientific point of view. It will however require technical input to formalise biological 

hypotheses and embed the current knowledge in an adequate e-science infrastructure which 

allows to further enhance our understanding.

3 To provide more robust evidence, the remaining parameters need to be estimated separately for models in- and exclu-

ding effort, which has not been done here.
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APPENDIX 1 

MODEL DESCRIPTION

The muskrat population model is set up as a model is defined on a rectangular grid of 5 by 

5 km, which coincides with the spatial observation units in the muskrat-catch registration 

system (atlas-squares). The model operates with seasonal time-steps, based on a subdivision of 

a year into winter, spring, summer and autumn (denoted by k with values 1 to 4 respectively). 

The model distinguishes two state variables: the number of adults (ak) and juveniles (jk) and 

keeps track of these numbers in each cohort for each seΩason k and each spatial unit. In the 

equations that follow, the spatial units are not explicitly denoted (they apply to both state 

variables, while the parameters in the model are the same for all spatial units, except for one: 

the suitable habitat (sh). The suitable habitat for the muskrat is given by the length of the 

water-edges in km.

The year starts in the winter season, when the cohort with juveniles is transferred to the 

cohort of adults.
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  1a

     1b

here a and j refer to the number of adults and juveniles in the respective season, sa  is the 

adult survival rate (a constant), sek is the spatial exchange, which depends on the density of 

the focal spatial unit and its eight surrounding patches. The term cak gives the number of 

adults that are being caught by trapping.

In the spring and summer seasons (k=2 and 3), the equations change due to birth and the 

absence of migration.
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 2a

 2b

With s j k as the juvenile survival rate (density dependent and therefore not constant in space 

and time), brk the birth rate (also density dependent) and c j k the number of juveniles that are 

being caught by trapping.

In the autumn season (k=4), the system switches again:
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 3a

      3b

With all parameters as previously explained. Note there is spatial exchange modelled in 

autumn for juveniles and adults

The total population size in each period is the sum of the number of juveniles and adults 

(pk=ak+jk) and the population density is calculated by dividing the population size by the 

suitable habitat (the length of the water-edges in km): pdk=pk/ sh .
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The birth rate at any given time depends on the population density by a second order 

polynomial:
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variables, while the parameters in the model are the same for all spatial units, except for one: 
the suitable habitat (sh). The suitable habitat for the muskrat is given by the length of the water-
edges in km. 
 
The year starts in the winter season, when the cohort with juveniles is transferred to the cohort 
of adults. 
𝑗𝑗𝑘𝑘 = 0         1a 
𝑎𝑎𝑘𝑘 = 𝑠𝑠𝑎𝑎 𝑎𝑎𝑘𝑘−1 + 𝑗𝑗𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑗𝑗𝑘𝑘−1 − 𝑐𝑐𝑎𝑎𝑘𝑘     1b 
 
here 𝑎𝑎.. and 𝑗𝑗.. refer to the number of adults and juveniles in the respective season, 𝑠𝑠𝑎𝑎 is the 
adult survival rate (a constant), 𝑠𝑠𝑠𝑠𝑘𝑘 is the spatial exchange, which depends on the density of 
the focal spatial unit and its eight surrounding patches. The term 𝑐𝑐𝑎𝑎𝑘𝑘 gives the number of adults 
that are being caught by trapping. 
 
In the spring and summer seasons (k=2 and 3), the equations change due to birth and the 
absence of migration. 
𝑗𝑗𝑘𝑘 = 𝑠𝑠𝑗𝑗𝑘𝑘 𝑗𝑗𝑘𝑘−1 + 𝑏𝑏𝑏𝑏𝑘𝑘 𝑎𝑎𝑘𝑘−1 − 𝑐𝑐𝑗𝑗𝑘𝑘      2a 
𝑎𝑎𝑘𝑘 = 𝑠𝑠𝑎𝑎 𝑎𝑎𝑘𝑘−1− 𝑐𝑐𝑎𝑎𝑘𝑘       2b 
 
With 𝑠𝑠𝑗𝑗𝑘𝑘 as the juvenile survival rate (density dependent and therefore not constant in space 
and time), 𝑏𝑏𝑏𝑏𝑘𝑘 the birth rate (also density dependent) and 𝑐𝑐𝑗𝑗𝑘𝑘 the number of juveniles that are 
being caught by trapping. 
 
In the autumn season (k=4), the system switches again: 
𝑗𝑗𝑘𝑘 = 𝑠𝑠𝑗𝑗𝑘𝑘 𝑗𝑗𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑗𝑗𝑘𝑘−1 − 𝑐𝑐𝑗𝑗𝑘𝑘      3a 
𝑎𝑎𝑘𝑘 = 𝑠𝑠𝑎𝑎 𝑎𝑎𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑎𝑎𝑘𝑘−1 − 𝑐𝑐𝑎𝑎𝑘𝑘      3b 
 
With all parameters as previously explained. Note there is spatial exchange modelled in 
autumn for juveniles and adults 
 
The total population size in each period is the sum of the number of juveniles and adults ( 𝑝𝑝𝑘𝑘 =
𝑎𝑎𝑘𝑘 +  𝑗𝑗𝑘𝑘) and the population density is calculated by dividing the population size by the suitable 
habitat (the length of the water-edges in km): 𝑝𝑝𝑝𝑝𝑘𝑘 = 𝑝𝑝𝑘𝑘/𝑠𝑠ℎ. 
 
The birth rate at any given time depends on the population density by a second order 
polynomial: 
𝑏𝑏𝑏𝑏𝑘𝑘 = −𝑏𝑏𝑏𝑏𝑝𝑝𝑠𝑠𝑐𝑐( 𝑝𝑝𝑝𝑝𝑘𝑘−1 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑝𝑝𝑏𝑏)2 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏    4     4

where the parameters are set to brdec= 0 .01,  bropt=20 ,  and brmax=6 . The parameter bropt 

specifies the density at which the maximum birth rate occurs, brmax  is the maximum birth 

rate at optimum density and brdec  is the decline in birth rate under suboptimal densities.

The survival rate for juveniles is also given by a second order polynomial:
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where the parameters are set to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.01, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 20 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 6. The parameter 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum birth rate occurs, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
birth rate at optimum density and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the decline in birth rate under suboptimal densities. 
 
The survival rate for juveniles is also given by a second order polynomial: 
𝑠𝑠𝑠𝑠𝑘𝑘 = −𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏( 𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏)2 + 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏       5 
 
where the parameters are set to 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.0001, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 40 and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.6. The parameter 
𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum survival rate occurs, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
survival rate at optimum density and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the decline of survival rate (a general mechanism 
for this at low levels may –for example- be due to increased predation pressure, at higher 
levels this may be due to competition and disease). Note that the survival rates are defined per 
season, so a survival on a yearly basis is 0.64 = 0.13 at best for a juvenile, the value for 
seasonal survival for adults (𝑠𝑠𝑏𝑏) is fixed at 0.85. 
 
The spatial exchange is given by a rectangular hyperbola (saturation curve): 
 
𝑠𝑠𝑏𝑏𝑘𝑘 =  𝑏𝑏𝑏𝑏𝑏𝑏 (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1)/(ℎ𝑏𝑏𝑏𝑏 + (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1))    6 
 
with 𝑏𝑏𝑏𝑏𝑏𝑏 a fixed exchange rate, specifying the fraction of individuals that can move between a 
patch and its surroundings. This exchange rate is achieved at very high differences in density 
between a focal patch and the average population density in its surrounding patches (𝑏𝑏𝑏𝑏𝑘𝑘−1 −
𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1). The parameter ℎ𝑏𝑏𝑏𝑏 specifies the population density gradient at which 0.5 𝑏𝑏𝑏𝑏 is 
reached.  
 
Finally, the estimated catch is described by the models given in the main text (equations 1-4, in 
model 4 it is a rectangular hyperbola:  
 
𝑦𝑦𝑘𝑘 =  𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1/(ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)       7a 
 
with 𝑦𝑦𝑘𝑘 the predicted catch, based on 𝑏𝑏𝑏𝑏𝑘𝑘−1 and a number of parameters. The term 𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 is the 
effort spent on catching (field hours), 𝑏𝑏𝑏𝑏𝑏𝑏 the maximum catch rate per unit effort at high 
densities, and ℎ𝑏𝑏𝑏𝑏 the density at which half the catch rate per unit effort is reached. A value of 
0.8 was used for 𝑏𝑏𝑏𝑏𝑏𝑏 and a value of 40 for ℎ𝑏𝑏𝑏𝑏. 
 
Ultimately, the predicted catch is compared to the realised (observed) total catch 𝑏𝑏𝑘𝑘. The 
realised catch 𝑏𝑏𝑘𝑘 is distributed over 𝑏𝑏𝑏𝑏𝑘𝑘 and 𝑏𝑏𝑠𝑠𝑘𝑘 proportionally to the relative amounts 𝑏𝑏𝑘𝑘 and 𝑠𝑠𝑘𝑘. 
 
To determine the trapping effort that would be required to compensate for natural growth 
(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘), the net population increment after survival and birth without catch can be calculated 
(see e.g. eq. 2a and 2b) and substituted for 𝑦𝑦𝑘𝑘 in equation 7a. Reorganising this equation leads 
to an expression for 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 (see eq. 7b) 
 
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑘𝑘 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑏𝑏 𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1 − 𝑠𝑠𝑘𝑘−1; 0) (ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)/(𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1) 7b 
 
The term 𝑏𝑏𝑏𝑏𝑏𝑏(… ; 0) specifies that only population increments are considered. In case of a 
population decline, the result is set to zero. In that case there is no effort required to 
compensate for natural growth 4.  
                                                      
4 Note that this algorithm may be a biased estimator since it does not integrate effort over the year. 
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where the parameters are set to s jdec= 0 .0001,  s jmax=40,  and s jmax=0.6 . The parameter 

s jopt  specifies the density at which the maximum survival rate occurs, s jmax  is the 

maximum survival rate at optimum density and s jdec  is the decline of survival rate (a general 

mechanism for this at low levels may – for example – be due to increased predation pressure, 

at higher levels this may be due to competition and disease). Note that the survival rates are 

defined per season,  so a survival on a yearly basis is 0 .64=0.13 at best for a juvenile, the value 

for seasonal survival for adults (sa) is fixed at 0.85.

The spatial exchange is given by a rectangular hyperbola (saturation curve):
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where the parameters are set to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.01, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 20 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 6. The parameter 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum birth rate occurs, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
birth rate at optimum density and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the decline in birth rate under suboptimal densities. 
 
The survival rate for juveniles is also given by a second order polynomial: 
𝑠𝑠𝑠𝑠𝑘𝑘 = −𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏( 𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏)2 + 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏       5 
 
where the parameters are set to 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.0001, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 40 and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.6. The parameter 
𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum survival rate occurs, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
survival rate at optimum density and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the decline of survival rate (a general mechanism 
for this at low levels may –for example- be due to increased predation pressure, at higher 
levels this may be due to competition and disease). Note that the survival rates are defined per 
season, so a survival on a yearly basis is 0.64 = 0.13 at best for a juvenile, the value for 
seasonal survival for adults (𝑠𝑠𝑏𝑏) is fixed at 0.85. 
 
The spatial exchange is given by a rectangular hyperbola (saturation curve): 
 
𝑠𝑠𝑏𝑏𝑘𝑘 =  𝑏𝑏𝑏𝑏𝑏𝑏 (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1)/(ℎ𝑏𝑏𝑏𝑏 + (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1))    6 
 
with 𝑏𝑏𝑏𝑏𝑏𝑏 a fixed exchange rate, specifying the fraction of individuals that can move between a 
patch and its surroundings. This exchange rate is achieved at very high differences in density 
between a focal patch and the average population density in its surrounding patches (𝑏𝑏𝑏𝑏𝑘𝑘−1 −
𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1). The parameter ℎ𝑏𝑏𝑏𝑏 specifies the population density gradient at which 0.5 𝑏𝑏𝑏𝑏 is 
reached.  
 
Finally, the estimated catch is described by the models given in the main text (equations 1-4, in 
model 4 it is a rectangular hyperbola:  
 
𝑦𝑦𝑘𝑘 =  𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1/(ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)       7a 
 
with 𝑦𝑦𝑘𝑘 the predicted catch, based on 𝑏𝑏𝑏𝑏𝑘𝑘−1 and a number of parameters. The term 𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 is the 
effort spent on catching (field hours), 𝑏𝑏𝑏𝑏𝑏𝑏 the maximum catch rate per unit effort at high 
densities, and ℎ𝑏𝑏𝑏𝑏 the density at which half the catch rate per unit effort is reached. A value of 
0.8 was used for 𝑏𝑏𝑏𝑏𝑏𝑏 and a value of 40 for ℎ𝑏𝑏𝑏𝑏. 
 
Ultimately, the predicted catch is compared to the realised (observed) total catch 𝑏𝑏𝑘𝑘. The 
realised catch 𝑏𝑏𝑘𝑘 is distributed over 𝑏𝑏𝑏𝑏𝑘𝑘 and 𝑏𝑏𝑠𝑠𝑘𝑘 proportionally to the relative amounts 𝑏𝑏𝑘𝑘 and 𝑠𝑠𝑘𝑘. 
 
To determine the trapping effort that would be required to compensate for natural growth 
(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘), the net population increment after survival and birth without catch can be calculated 
(see e.g. eq. 2a and 2b) and substituted for 𝑦𝑦𝑘𝑘 in equation 7a. Reorganising this equation leads 
to an expression for 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 (see eq. 7b) 
 
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑘𝑘 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑏𝑏 𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1 − 𝑠𝑠𝑘𝑘−1; 0) (ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)/(𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1) 7b 
 
The term 𝑏𝑏𝑏𝑏𝑏𝑏(… ; 0) specifies that only population increments are considered. In case of a 
population decline, the result is set to zero. In that case there is no effort required to 
compensate for natural growth 4.  
                                                      
4 Note that this algorithm may be a biased estimator since it does not integrate effort over the year. 
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with erm  a fixed exchange rate, specifying the fraction of individuals that can move between 

a patch and its surroundings. This exchange rate is achieved at very high differences in 

density between a focal patch and the average population density in its surrounding patches 

(pdk–1–Apdk–1). The parameter hed  specifies the population density gradient at which 0.5 er 

is reached. 

Finally, the estimated catch is described by the models given in the main text (equations 1-4, 

in model 4 it is a rectangular hyperbola: 
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where the parameters are set to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.01, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 20 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 6. The parameter 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum birth rate occurs, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
birth rate at optimum density and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the decline in birth rate under suboptimal densities. 
 
The survival rate for juveniles is also given by a second order polynomial: 
𝑠𝑠𝑠𝑠𝑘𝑘 = −𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏( 𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏)2 + 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏       5 
 
where the parameters are set to 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.0001, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 40 and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.6. The parameter 
𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum survival rate occurs, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
survival rate at optimum density and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the decline of survival rate (a general mechanism 
for this at low levels may –for example- be due to increased predation pressure, at higher 
levels this may be due to competition and disease). Note that the survival rates are defined per 
season, so a survival on a yearly basis is 0.64 = 0.13 at best for a juvenile, the value for 
seasonal survival for adults (𝑠𝑠𝑏𝑏) is fixed at 0.85. 
 
The spatial exchange is given by a rectangular hyperbola (saturation curve): 
 
𝑠𝑠𝑏𝑏𝑘𝑘 =  𝑏𝑏𝑏𝑏𝑏𝑏 (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1)/(ℎ𝑏𝑏𝑏𝑏 + (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1))    6 
 
with 𝑏𝑏𝑏𝑏𝑏𝑏 a fixed exchange rate, specifying the fraction of individuals that can move between a 
patch and its surroundings. This exchange rate is achieved at very high differences in density 
between a focal patch and the average population density in its surrounding patches (𝑏𝑏𝑏𝑏𝑘𝑘−1 −
𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1). The parameter ℎ𝑏𝑏𝑏𝑏 specifies the population density gradient at which 0.5 𝑏𝑏𝑏𝑏 is 
reached.  
 
Finally, the estimated catch is described by the models given in the main text (equations 1-4, in 
model 4 it is a rectangular hyperbola:  
 
𝑦𝑦𝑘𝑘 =  𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1/(ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)       7a 
 
with 𝑦𝑦𝑘𝑘 the predicted catch, based on 𝑏𝑏𝑏𝑏𝑘𝑘−1 and a number of parameters. The term 𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 is the 
effort spent on catching (field hours), 𝑏𝑏𝑏𝑏𝑏𝑏 the maximum catch rate per unit effort at high 
densities, and ℎ𝑏𝑏𝑏𝑏 the density at which half the catch rate per unit effort is reached. A value of 
0.8 was used for 𝑏𝑏𝑏𝑏𝑏𝑏 and a value of 40 for ℎ𝑏𝑏𝑏𝑏. 
 
Ultimately, the predicted catch is compared to the realised (observed) total catch 𝑏𝑏𝑘𝑘. The 
realised catch 𝑏𝑏𝑘𝑘 is distributed over 𝑏𝑏𝑏𝑏𝑘𝑘 and 𝑏𝑏𝑠𝑠𝑘𝑘 proportionally to the relative amounts 𝑏𝑏𝑘𝑘 and 𝑠𝑠𝑘𝑘. 
 
To determine the trapping effort that would be required to compensate for natural growth 
(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘), the net population increment after survival and birth without catch can be calculated 
(see e.g. eq. 2a and 2b) and substituted for 𝑦𝑦𝑘𝑘 in equation 7a. Reorganising this equation leads 
to an expression for 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 (see eq. 7b) 
 
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑘𝑘 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑏𝑏 𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1 − 𝑠𝑠𝑘𝑘−1; 0) (ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)/(𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1) 7b 
 
The term 𝑏𝑏𝑏𝑏𝑏𝑏(… ; 0) specifies that only population increments are considered. In case of a 
population decline, the result is set to zero. In that case there is no effort required to 
compensate for natural growth 4.  
                                                      
4 Note that this algorithm may be a biased estimator since it does not integrate effort over the year. 

 7a

with yk the predicted catch, based on pdk–1 and a number of parameters. The term e f f k is the 

effort spent on catching (field hours), crm  the maximum catch rate per unit effort at high 

densities, and hcd the density at which half the catch rate per unit effort is reached. A value 

of 0.8 was used for crm  and a value of 40 for hcd .

Ultimately, the predicted catch is compared to the realised (observed) total catch ck.  

The realised catch ck is distributed over cak and cjk proportionally to the relative amounts ak 

and jk.
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To determine the trapping effort that would be required to compensate for natural growth 

(cef fk), the net population increment after survival and birth without catch can be calculated 

(see e.g. eq. 2a and 2b) and substituted for yk in equation 7a. Reorganising this equation leads 

to an expression for cef fk (see eq. 7b)
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where the parameters are set to 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.01, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 20 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 6. The parameter 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum birth rate occurs, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
birth rate at optimum density and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the decline in birth rate under suboptimal densities. 
 
The survival rate for juveniles is also given by a second order polynomial: 
𝑠𝑠𝑠𝑠𝑘𝑘 = −𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏( 𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏)2 + 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏       5 
 
where the parameters are set to 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.0001, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 40 and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 = 0.6. The parameter 
𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 specifies the density at which the maximum survival rate occurs, 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the maximum 
survival rate at optimum density and 𝑠𝑠𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏 is the decline of survival rate (a general mechanism 
for this at low levels may –for example- be due to increased predation pressure, at higher 
levels this may be due to competition and disease). Note that the survival rates are defined per 
season, so a survival on a yearly basis is 0.64 = 0.13 at best for a juvenile, the value for 
seasonal survival for adults (𝑠𝑠𝑏𝑏) is fixed at 0.85. 
 
The spatial exchange is given by a rectangular hyperbola (saturation curve): 
 
𝑠𝑠𝑏𝑏𝑘𝑘 =  𝑏𝑏𝑏𝑏𝑏𝑏 (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1)/(ℎ𝑏𝑏𝑏𝑏 + (𝑏𝑏𝑏𝑏𝑘𝑘−1 − 𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1))    6 
 
with 𝑏𝑏𝑏𝑏𝑏𝑏 a fixed exchange rate, specifying the fraction of individuals that can move between a 
patch and its surroundings. This exchange rate is achieved at very high differences in density 
between a focal patch and the average population density in its surrounding patches (𝑏𝑏𝑏𝑏𝑘𝑘−1 −
𝐴𝐴𝑏𝑏𝑏𝑏𝑘𝑘−1). The parameter ℎ𝑏𝑏𝑏𝑏 specifies the population density gradient at which 0.5 𝑏𝑏𝑏𝑏 is 
reached.  
 
Finally, the estimated catch is described by the models given in the main text (equations 1-4, in 
model 4 it is a rectangular hyperbola:  
 
𝑦𝑦𝑘𝑘 =  𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1/(ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)       7a 
 
with 𝑦𝑦𝑘𝑘 the predicted catch, based on 𝑏𝑏𝑏𝑏𝑘𝑘−1 and a number of parameters. The term 𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 is the 
effort spent on catching (field hours), 𝑏𝑏𝑏𝑏𝑏𝑏 the maximum catch rate per unit effort at high 
densities, and ℎ𝑏𝑏𝑏𝑏 the density at which half the catch rate per unit effort is reached. A value of 
0.8 was used for 𝑏𝑏𝑏𝑏𝑏𝑏 and a value of 40 for ℎ𝑏𝑏𝑏𝑏. 
 
Ultimately, the predicted catch is compared to the realised (observed) total catch 𝑏𝑏𝑘𝑘. The 
realised catch 𝑏𝑏𝑘𝑘 is distributed over 𝑏𝑏𝑏𝑏𝑘𝑘 and 𝑏𝑏𝑠𝑠𝑘𝑘 proportionally to the relative amounts 𝑏𝑏𝑘𝑘 and 𝑠𝑠𝑘𝑘. 
 
To determine the trapping effort that would be required to compensate for natural growth 
(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘), the net population increment after survival and birth without catch can be calculated 
(see e.g. eq. 2a and 2b) and substituted for 𝑦𝑦𝑘𝑘 in equation 7a. Reorganising this equation leads 
to an expression for 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 (see eq. 7b) 
 
𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑘𝑘 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑏𝑏 𝑏𝑏𝑘𝑘−1 − 𝑏𝑏𝑘𝑘−1 + 𝑠𝑠𝑠𝑠𝑘𝑘 𝑠𝑠𝑘𝑘−1 − 𝑠𝑠𝑘𝑘−1; 0) (ℎ𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏𝑘𝑘−1)/(𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑘𝑘−1) 7b 
 
The term 𝑏𝑏𝑏𝑏𝑏𝑏(… ; 0) specifies that only population increments are considered. In case of a 
population decline, the result is set to zero. In that case there is no effort required to 
compensate for natural growth 4.  
                                                      
4 Note that this algorithm may be a biased estimator since it does not integrate effort over the year. 

 7b

The term max(...;0)  specifies that only population increments are considered. In case 

of a population decline, the result is set to zero. In that case there is no effort required to 

compensate for natural growth4. 

4 Note that this algorithm may be a biased estimator since it does not integrate effort over the year.
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APPENDIX 2 

STATE CORRECTION WITH AN ENSEMBLE 

KALMAN FILTER

The implementation of the Ensemble Kalman filter largely follows Burgers et al. (1998) and 

Evensen (2003; 2007). 

The equations with ak and jk as output (eqs 1 to 3, supported by equations 4 to 6), are combined in 

a single set of equations to form a population model (also called the state-transition function) 

which predicts the population at a given time step for every spatial unit (pdk, equation 8a). 

This model is linked to a second equation (equation 7), describing the predicted catch under 

the actual effort if this population density would be present. The latter equation is also called 

the observation function, and is for clarity repeated as equation 8b. 
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Appendix 2 - State correction with an Ensemble Kalman 
filter 

The implementation of the Ensemble Kalman filter largely follows Burgers et al. (1998) and 
Evensen (2003; 2007).  
 
The equations with 𝑎𝑎𝑘𝑘 and 𝑗𝑗𝑘𝑘 as output (eqs 1 to 3, supported by equations 4 to 6), are 
combined in a single set of equations to form a population model (also called the state-
transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
 
𝑝𝑝𝑝𝑝𝑘𝑘 =  𝑓𝑓(𝑗𝑗𝑘𝑘−1, 𝑎𝑎𝑘𝑘−1, … . )       8a  
𝑦𝑦𝑘𝑘 =  𝑒𝑒𝑓𝑓𝑓𝑓𝑘𝑘 𝑐𝑐𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑘𝑘−1/(ℎ𝑐𝑐𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑘𝑘−1)     8b 
 
Both the population model and the observation function as specified by eq. 8a and b give an 
expected value for a given spatio-temporal unit. A stochastic version of the model adds an error 
term due to misspecification of the population model, 𝑞𝑞𝑘𝑘 (‘model error’); and a combined error 
due to misspecification in the observation function and sampling error, 𝑟𝑟𝑘𝑘 (‘observation error’): 
 
𝑥𝑥𝑘𝑘 =  𝑝𝑝𝑝𝑝𝑘𝑘 + 𝑞𝑞𝑘𝑘  with  𝑞𝑞𝑘𝑘~𝑁𝑁(0, 𝐐𝐐)     9a  
𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘)   where ℎ(. . ) is the righthand side of 8b  9b 
𝑐𝑐𝑘𝑘 = 𝑦𝑦𝑘𝑘 + 𝑟𝑟𝑘𝑘   with  𝑟𝑟𝑘𝑘~𝑁𝑁(0, 𝐑𝐑)    9c 
 
The covariance matrix 𝐐𝐐 describes the estimate of the model error, and the covariance matrix 
𝐑𝐑 describes the error in the observations. The value 𝑦𝑦𝑘𝑘 is what the value of the data would be 
for the state 𝑥𝑥𝑘𝑘 in the absence of observation errors. 
The values for all the spatial units can be combined in a single column vector for all 𝑥𝑥𝑘𝑘 into 𝐱𝐱𝑘𝑘 
(a vector is denoted by a bold non-italic symbol) and for all 𝑦𝑦𝑘𝑘 into 𝐲𝐲𝑘𝑘. In what follows we will 
omit the subscript for time (k) for readability (still each of the calculation steps are referring to a 
single time instant). In addition, we assume that there are m spatial units, so that vectors 𝐱𝐱𝑘𝑘 
and 𝐲𝐲𝑘𝑘 have a length of M. 
 
Given an initial estimate of 𝐐𝐐, an ensemble of N vectors with model errors (𝐪𝐪𝑖𝑖) is generated, 
which give N vectors 𝐱𝐱𝑖𝑖. The vectors 𝐱𝐱𝑖𝑖 are used to form the matrices 𝐗𝐗 and 𝐗𝐗𝐗𝐗 
 
𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖     10a 
𝐗𝐗𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖 − �̅�𝐱    10b 
 
where the i-th column of 𝐗𝐗 consists of the vectors 𝐱𝐱𝑖𝑖 and 𝐗𝐗𝐗𝐗 consists of ensemble member i 
minus the average over all ensemble members (�̅�𝐱). Both 𝐗𝐗 and 𝐗𝐗𝐗𝐗 have dimension (N x M). 
 
Based on the vectors 𝐱𝐱𝑖𝑖, N ensemble members 𝐲𝐲𝑖𝑖 are generated via equation 9b. These 
ensemble members make-up the matrix 𝐇𝐇, and 𝐇𝐇A is built-up column-wise by taking the 
difference of each individual ensemble member with the average over all ensemble members 
(�̅�𝐲). 
 

 8a

 8b

Both the population model and the observation function as specified by eq. 8a and b give 

an expected value for a given spatio-temporal unit. A stochastic version of the model adds 

an error term due to misspecification of the population model, qk (‘model error’); and a 

combined error due to misspecification in the observation function and sampling error, rk 

(‘observation error’):
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Appendix 2 - State correction with an Ensemble Kalman 
filter 

The implementation of the Ensemble Kalman filter largely follows Burgers et al. (1998) and 
Evensen (2003; 2007).  
 
The equations with 𝑎𝑎𝑘𝑘 and 𝑗𝑗𝑘𝑘 as output (eqs 1 to 3, supported by equations 4 to 6), are 
combined in a single set of equations to form a population model (also called the state-
transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
 
𝑝𝑝𝑝𝑝𝑘𝑘 =  𝑓𝑓(𝑗𝑗𝑘𝑘−1, 𝑎𝑎𝑘𝑘−1, … . )       8a  
𝑦𝑦𝑘𝑘 =  𝑒𝑒𝑓𝑓𝑓𝑓𝑘𝑘 𝑐𝑐𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑘𝑘−1/(ℎ𝑐𝑐𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑘𝑘−1)     8b 
 
Both the population model and the observation function as specified by eq. 8a and b give an 
expected value for a given spatio-temporal unit. A stochastic version of the model adds an error 
term due to misspecification of the population model, 𝑞𝑞𝑘𝑘 (‘model error’); and a combined error 
due to misspecification in the observation function and sampling error, 𝑟𝑟𝑘𝑘 (‘observation error’): 
 
𝑥𝑥𝑘𝑘 =  𝑝𝑝𝑝𝑝𝑘𝑘 + 𝑞𝑞𝑘𝑘  with  𝑞𝑞𝑘𝑘~𝑁𝑁(0, 𝐐𝐐)     9a  
𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘)   where ℎ(. . ) is the righthand side of 8b  9b 
𝑐𝑐𝑘𝑘 = 𝑦𝑦𝑘𝑘 + 𝑟𝑟𝑘𝑘   with  𝑟𝑟𝑘𝑘~𝑁𝑁(0, 𝐑𝐑)    9c 
 
The covariance matrix 𝐐𝐐 describes the estimate of the model error, and the covariance matrix 
𝐑𝐑 describes the error in the observations. The value 𝑦𝑦𝑘𝑘 is what the value of the data would be 
for the state 𝑥𝑥𝑘𝑘 in the absence of observation errors. 
The values for all the spatial units can be combined in a single column vector for all 𝑥𝑥𝑘𝑘 into 𝐱𝐱𝑘𝑘 
(a vector is denoted by a bold non-italic symbol) and for all 𝑦𝑦𝑘𝑘 into 𝐲𝐲𝑘𝑘. In what follows we will 
omit the subscript for time (k) for readability (still each of the calculation steps are referring to a 
single time instant). In addition, we assume that there are m spatial units, so that vectors 𝐱𝐱𝑘𝑘 
and 𝐲𝐲𝑘𝑘 have a length of M. 
 
Given an initial estimate of 𝐐𝐐, an ensemble of N vectors with model errors (𝐪𝐪𝑖𝑖) is generated, 
which give N vectors 𝐱𝐱𝑖𝑖. The vectors 𝐱𝐱𝑖𝑖 are used to form the matrices 𝐗𝐗 and 𝐗𝐗𝐗𝐗 
 
𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖     10a 
𝐗𝐗𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖 − �̅�𝐱    10b 
 
where the i-th column of 𝐗𝐗 consists of the vectors 𝐱𝐱𝑖𝑖 and 𝐗𝐗𝐗𝐗 consists of ensemble member i 
minus the average over all ensemble members (�̅�𝐱). Both 𝐗𝐗 and 𝐗𝐗𝐗𝐗 have dimension (N x M). 
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Appendix 2 - State correction with an Ensemble Kalman 
filter 

The implementation of the Ensemble Kalman filter largely follows Burgers et al. (1998) and 
Evensen (2003; 2007).  
 
The equations with 𝑎𝑎𝑘𝑘 and 𝑗𝑗𝑘𝑘 as output (eqs 1 to 3, supported by equations 4 to 6), are 
combined in a single set of equations to form a population model (also called the state-
transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
 
𝑝𝑝𝑝𝑝𝑘𝑘 =  𝑓𝑓(𝑗𝑗𝑘𝑘−1, 𝑎𝑎𝑘𝑘−1, … . )       8a  
𝑦𝑦𝑘𝑘 =  𝑒𝑒𝑓𝑓𝑓𝑓𝑘𝑘 𝑐𝑐𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑘𝑘−1/(ℎ𝑐𝑐𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑘𝑘−1)     8b 
 
Both the population model and the observation function as specified by eq. 8a and b give an 
expected value for a given spatio-temporal unit. A stochastic version of the model adds an error 
term due to misspecification of the population model, 𝑞𝑞𝑘𝑘 (‘model error’); and a combined error 
due to misspecification in the observation function and sampling error, 𝑟𝑟𝑘𝑘 (‘observation error’): 
 
𝑥𝑥𝑘𝑘 =  𝑝𝑝𝑝𝑝𝑘𝑘 + 𝑞𝑞𝑘𝑘  with  𝑞𝑞𝑘𝑘~𝑁𝑁(0, 𝐐𝐐)     9a  
𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘)   where ℎ(. . ) is the righthand side of 8b  9b 
𝑐𝑐𝑘𝑘 = 𝑦𝑦𝑘𝑘 + 𝑟𝑟𝑘𝑘   with  𝑟𝑟𝑘𝑘~𝑁𝑁(0, 𝐑𝐑)    9c 
 
The covariance matrix 𝐐𝐐 describes the estimate of the model error, and the covariance matrix 
𝐑𝐑 describes the error in the observations. The value 𝑦𝑦𝑘𝑘 is what the value of the data would be 
for the state 𝑥𝑥𝑘𝑘 in the absence of observation errors. 
The values for all the spatial units can be combined in a single column vector for all 𝑥𝑥𝑘𝑘 into 𝐱𝐱𝑘𝑘 
(a vector is denoted by a bold non-italic symbol) and for all 𝑦𝑦𝑘𝑘 into 𝐲𝐲𝑘𝑘. In what follows we will 
omit the subscript for time (k) for readability (still each of the calculation steps are referring to a 
single time instant). In addition, we assume that there are m spatial units, so that vectors 𝐱𝐱𝑘𝑘 
and 𝐲𝐲𝑘𝑘 have a length of M. 
 
Given an initial estimate of 𝐐𝐐, an ensemble of N vectors with model errors (𝐪𝐪𝑖𝑖) is generated, 
which give N vectors 𝐱𝐱𝑖𝑖. The vectors 𝐱𝐱𝑖𝑖 are used to form the matrices 𝐗𝐗 and 𝐗𝐗𝐗𝐗 
 
𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖     10a 
𝐗𝐗𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖 − �̅�𝐱    10b 
 
where the i-th column of 𝐗𝐗 consists of the vectors 𝐱𝐱𝑖𝑖 and 𝐗𝐗𝐗𝐗 consists of ensemble member i 
minus the average over all ensemble members (�̅�𝐱). Both 𝐗𝐗 and 𝐗𝐗𝐗𝐗 have dimension (N x M). 
 
Based on the vectors 𝐱𝐱𝑖𝑖, N ensemble members 𝐲𝐲𝑖𝑖 are generated via equation 9b. These 
ensemble members make-up the matrix 𝐇𝐇, and 𝐇𝐇A is built-up column-wise by taking the 
difference of each individual ensemble member with the average over all ensemble members 
(�̅�𝐲). 
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Evensen (2003; 2007).  
 
The equations with 𝑎𝑎𝑘𝑘 and 𝑗𝑗𝑘𝑘 as output (eqs 1 to 3, supported by equations 4 to 6), are 
combined in a single set of equations to form a population model (also called the state-
transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
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Both the population model and the observation function as specified by eq. 8a and b give an 
expected value for a given spatio-temporal unit. A stochastic version of the model adds an error 
term due to misspecification of the population model, 𝑞𝑞𝑘𝑘 (‘model error’); and a combined error 
due to misspecification in the observation function and sampling error, 𝑟𝑟𝑘𝑘 (‘observation error’): 
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𝐑𝐑 describes the error in the observations. The value 𝑦𝑦𝑘𝑘 is what the value of the data would be 
for the state 𝑥𝑥𝑘𝑘 in the absence of observation errors. 
The values for all the spatial units can be combined in a single column vector for all 𝑥𝑥𝑘𝑘 into 𝐱𝐱𝑘𝑘 
(a vector is denoted by a bold non-italic symbol) and for all 𝑦𝑦𝑘𝑘 into 𝐲𝐲𝑘𝑘. In what follows we will 
omit the subscript for time (k) for readability (still each of the calculation steps are referring to a 
single time instant). In addition, we assume that there are m spatial units, so that vectors 𝐱𝐱𝑘𝑘 
and 𝐲𝐲𝑘𝑘 have a length of M. 
 
Given an initial estimate of 𝐐𝐐, an ensemble of N vectors with model errors (𝐪𝐪𝑖𝑖) is generated, 
which give N vectors 𝐱𝐱𝑖𝑖. The vectors 𝐱𝐱𝑖𝑖 are used to form the matrices 𝐗𝐗 and 𝐗𝐗𝐗𝐗 
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𝐗𝐗𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖 − �̅�𝐱    10b 
 
where the i-th column of 𝐗𝐗 consists of the vectors 𝐱𝐱𝑖𝑖 and 𝐗𝐗𝐗𝐗 consists of ensemble member i 
minus the average over all ensemble members (�̅�𝐱). Both 𝐗𝐗 and 𝐗𝐗𝐗𝐗 have dimension (N x M). 
 
Based on the vectors 𝐱𝐱𝑖𝑖, N ensemble members 𝐲𝐲𝑖𝑖 are generated via equation 9b. These 
ensemble members make-up the matrix 𝐇𝐇, and 𝐇𝐇A is built-up column-wise by taking the 
difference of each individual ensemble member with the average over all ensemble members 
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combined in a single set of equations to form a population model (also called the state-
transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
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Both the population model and the observation function as specified by eq. 8a and b give an 
expected value for a given spatio-temporal unit. A stochastic version of the model adds an error 
term due to misspecification of the population model, 𝑞𝑞𝑘𝑘 (‘model error’); and a combined error 
due to misspecification in the observation function and sampling error, 𝑟𝑟𝑘𝑘 (‘observation error’): 
 
𝑥𝑥𝑘𝑘 =  𝑝𝑝𝑝𝑝𝑘𝑘 + 𝑞𝑞𝑘𝑘  with  𝑞𝑞𝑘𝑘~𝑁𝑁(0, 𝐐𝐐)     9a  
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The covariance matrix 𝐐𝐐 describes the estimate of the model error, and the covariance matrix 
𝐑𝐑 describes the error in the observations. The value 𝑦𝑦𝑘𝑘 is what the value of the data would be 
for the state 𝑥𝑥𝑘𝑘 in the absence of observation errors. 
The values for all the spatial units can be combined in a single column vector for all 𝑥𝑥𝑘𝑘 into 𝐱𝐱𝑘𝑘 
(a vector is denoted by a bold non-italic symbol) and for all 𝑦𝑦𝑘𝑘 into 𝐲𝐲𝑘𝑘. In what follows we will 
omit the subscript for time (k) for readability (still each of the calculation steps are referring to a 
single time instant). In addition, we assume that there are m spatial units, so that vectors 𝐱𝐱𝑘𝑘 
and 𝐲𝐲𝑘𝑘 have a length of M. 
 
Given an initial estimate of 𝐐𝐐, an ensemble of N vectors with model errors (𝐪𝐪𝑖𝑖) is generated, 
which give N vectors 𝐱𝐱𝑖𝑖. The vectors 𝐱𝐱𝑖𝑖 are used to form the matrices 𝐗𝐗 and 𝐗𝐗𝐗𝐗 
 
𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖     10a 
𝐗𝐗𝐗𝐗[: , 𝑖𝑖] =  𝐱𝐱𝑖𝑖 − �̅�𝐱    10b 
 
where the i-th column of 𝐗𝐗 consists of the vectors 𝐱𝐱𝑖𝑖 and 𝐗𝐗𝐗𝐗 consists of ensemble member i 
minus the average over all ensemble members (�̅�𝐱). Both 𝐗𝐗 and 𝐗𝐗𝐗𝐗 have dimension (N x M). 
 
Based on the vectors 𝐱𝐱𝑖𝑖, N ensemble members 𝐲𝐲𝑖𝑖 are generated via equation 9b. These 
ensemble members make-up the matrix 𝐇𝐇, and 𝐇𝐇A is built-up column-wise by taking the 
difference of each individual ensemble member with the average over all ensemble members 
(�̅�𝐲). 
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The covariance matrix Q describes the estimate of the model error, and the covariance matrix 

Q describes the error in the observations. The value yk is what the value of the data would be 

for the state xk in the absence of observation errors.

The values for all the spatial units can be combined in a single column vector for all xk into xk 

(a vector is denoted by a bold non-italic symbol) and for all yk into yk. In what follows we will 

omit the subscript for time (k) for readability (still each of the calculation steps are referring 

to a single time instant). In addition, we assume that there are m spatial units, so that vectors 

xk and yk have a length of M.

Given an initial estimate of Q, an ensemble of N vectors with model errors (qi) is generated, 

which give N vectors xi. The vectors xi are used to form the matrices X and XA
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transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
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where the i-th column of X consists of the vectors xi and XA consists of ensemble member 

i minus the average over all ensemble members (
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Appendix 2 - State correction with an Ensemble Kalman 
filter 

The implementation of the Ensemble Kalman filter largely follows Burgers et al. (1998) and 
Evensen (2003; 2007).  
 
The equations with 𝑎𝑎𝑘𝑘 and 𝑗𝑗𝑘𝑘 as output (eqs 1 to 3, supported by equations 4 to 6), are 
combined in a single set of equations to form a population model (also called the state-
transition function) which predicts the population at a given time step for every spatial unit (𝑝𝑝𝑝𝑝𝑘𝑘, 
equation 8a). This model is linked to a second equation (equation 7), describing the predicted 
catch under the actual effort if this population density would be present. The latter equation is 
also called the observation function, and is for clarity repeated as equation 8b.  
 
𝑝𝑝𝑝𝑝𝑘𝑘 =  𝑓𝑓(𝑗𝑗𝑘𝑘−1, 𝑎𝑎𝑘𝑘−1, … . )       8a  
𝑦𝑦𝑘𝑘 =  𝑒𝑒𝑓𝑓𝑓𝑓𝑘𝑘 𝑐𝑐𝑝𝑝𝑐𝑐 𝑝𝑝𝑝𝑝𝑘𝑘−1/(ℎ𝑐𝑐𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑘𝑘−1)     8b 
 
Both the population model and the observation function as specified by eq. 8a and b give an 
expected value for a given spatio-temporal unit. A stochastic version of the model adds an error 
term due to misspecification of the population model, 𝑞𝑞𝑘𝑘 (‘model error’); and a combined error 
due to misspecification in the observation function and sampling error, 𝑟𝑟𝑘𝑘 (‘observation error’): 
 
𝑥𝑥𝑘𝑘 =  𝑝𝑝𝑝𝑝𝑘𝑘 + 𝑞𝑞𝑘𝑘  with  𝑞𝑞𝑘𝑘~𝑁𝑁(0, 𝐐𝐐)     9a  
𝑦𝑦𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘)   where ℎ(. . ) is the righthand side of 8b  9b 
𝑐𝑐𝑘𝑘 = 𝑦𝑦𝑘𝑘 + 𝑟𝑟𝑘𝑘   with  𝑟𝑟𝑘𝑘~𝑁𝑁(0, 𝐑𝐑)    9c 
 
The covariance matrix 𝐐𝐐 describes the estimate of the model error, and the covariance matrix 
𝐑𝐑 describes the error in the observations. The value 𝑦𝑦𝑘𝑘 is what the value of the data would be 
for the state 𝑥𝑥𝑘𝑘 in the absence of observation errors. 
The values for all the spatial units can be combined in a single column vector for all 𝑥𝑥𝑘𝑘 into 𝐱𝐱𝑘𝑘 
(a vector is denoted by a bold non-italic symbol) and for all 𝑦𝑦𝑘𝑘 into 𝐲𝐲𝑘𝑘. In what follows we will 
omit the subscript for time (k) for readability (still each of the calculation steps are referring to a 
single time instant). In addition, we assume that there are m spatial units, so that vectors 𝐱𝐱𝑘𝑘 
and 𝐲𝐲𝑘𝑘 have a length of M. 
 
Given an initial estimate of 𝐐𝐐, an ensemble of N vectors with model errors (𝐪𝐪𝑖𝑖) is generated, 
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). Both X and XA have dimension (N x M).

Based on the vectors xi, N ensemble members yi are generated via equation 9b. These ensemble 

members make-up the matrix H, and HA is built-up column-wise by taking the difference of 

each individual ensemble member with the average over all ensemble members (
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𝐇𝐇[: , 𝑖𝑖] =  𝐲𝐲𝑖𝑖     11a 
𝐇𝐇𝐇𝐇[: , 𝑖𝑖] =  𝐲𝐲𝑖𝑖 − �̅�𝐲    11b 
 
A matrix 𝐃𝐃 is formed by assigning to each column in 𝐃𝐃 (denoted by 𝐃𝐃[: , 𝑖𝑖]) the vector with 
observations 𝐜𝐜 plus a random vector 𝐫𝐫𝑖𝑖 from the M-dimensional Normal distribution 𝑁𝑁(0, 𝐑𝐑). 
 
𝐃𝐃[: , 𝑖𝑖] =  𝐜𝐜 + 𝐫𝐫𝑖𝑖     12 
 
Subsequently the matrix P is calculated by  
 
𝐏𝐏 =  1

𝑁𝑁−1 𝐇𝐇𝐇𝐇 𝐇𝐇𝐇𝐇𝑻𝑻 + 𝐑𝐑    13 
 
with 𝐑𝐑 the covariance matrix for the error in the observation equation (as before). 
 
Next, a matrix with updated model states is calculated by 
𝐗𝐗𝒑𝒑 = 𝐗𝐗 + 1

𝑁𝑁−1
 𝐗𝐗𝐇𝐇 𝐇𝐇𝐇𝐇𝑻𝑻𝐏𝐏−𝟏𝟏(𝐃𝐃 − 𝐇𝐇)  14 

 
The matrix 𝐗𝐗𝒑𝒑 forms the new starting point of the model over a subsequent time-step, providing 
values the best estimate of 𝑝𝑝𝑝𝑝 for all M spatial units, over N ensemble members. To each of 
these values 𝑝𝑝𝑝𝑝 equations 9a and 9b are applied again, after which the various matrices are 
rebuilt (equations 10 to 13) for a next estimation step (equation 14). 
  

 11a
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A matrix D is formed by assigning to each column in D (denoted by D [ : , i ] )  the vector  

with observations c plus a random vector ri from the M-dimensional Normal distribution  

N(0, R) .
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with R the covariance matrix for the error in the observation equation (as before).

Next, a matrix with updated model states is calculated by
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 14

The matrix Xp forms the new starting point of the model over a subsequent time-step, 

providing values the best estimate of pd for all M spatial units, over N ensemble members. 

To each of these values pd equations 9a and 9b are applied again, after which the various 

matrices are rebuilt (equations 10 to 13) for a next estimation step (equation 14).
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APPENDIX 3 

POPULATION SIZE IN THE 

117 EXPERIMENTAL ATLAS SQUARES

VALUES OF ESTIMATED ANNUAL MEAN POPULATION SIZE OF MUSKRAT PER ATLAS SQUARE

Atlas year

square 2010 2011 2012 2013 2014 2015

351 643 891 2340 1711 1870 3100

357 562 980 529 326 229 96

547 476 75 1 9 18 0

621 1066 245 232 178 98 163

643 601 279 146 137 17 41

644 835 436 467 153 36 61

713 3365 3773 4533 3507 2768 3392

714 2194 3188 4867 4363 2989 2901

722 3915 4338 4244 3197 3139 3891

724 3142 5838 8104 5942 3738 3155

727 1629 2121 2160 1787 1105 763

736 2011 3591 3681 2899 1955 1148

757 577 1084 1515 978 659 434

831 741 1302 2920 1817 952 826

853 868 838 1396 948 806 836

1016 893 672 344 100 48 17

1024 929 532 252 570 70 82

1047 1286 1028 667 523 264 313

1048 1348 695 284 279 146 165

1141 1379 630 307 282 175 161

1225 570 393 434 716 597 594

1257 51 53 96 95 46 25

1341 758 964 1342 657 463 263

1435 249 238 739 237 157 144

1456 222 121 567 275 1059 930

1528 2271 1245 589 296 135 79

1616 492 310 160 187 90 53

1622 1802 1533 1775 1076 838 319

1632 2016 2010 1911 1488 856 431

1635 971 426 188 192 303 191

1645 1673 1241 943 583 564 494

1727 115 13 19 22 33 77

1734 104 81 29 77 116 212

1933 439 289 62 112 221 31

2113 1090 728 463 485 685 441

2116 2909 2161 1280 1097 803 744

2125 3586 2810 2090 2312 2237 1777
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Atlas year

square 2010 2011 2012 2013 2014 2015

2133 1792 1799 1548 2585 3249 1660

2136 2934 2636 2381 2309 2338 1272

2142 2269 2581 2573 2410 1905 1481

2143 2753 2732 2530 3235 3728 2110

2144 2668 2626 2431 3058 5111 2786

2153 2611 2673 1996 2074 2422 1881

2154 2212 1972 1653 1796 3090 2031

2552 262 304 749 804 1097 838

2638 106 528 225 255 367 188

2642 90 133 325 636 459 429

2718 328 94 171 242 413 463

2725 551 1501 1652 869 1216 1968

2738 222 70 209 459 677 951

2745 665 729 863 1024 998 1646

2748 58 11 21 189 282 421

2812 324 230 295 251 168 283

2836 235 366 140 109 56 50

2847 176 224 196 109 96 73

3114 793 476 368 567 489 511

3131 249 276 565 690 1044 1212

3133 1975 1609 2093 3143 2387 2578

3135 4678 2599 2101 1631 1768 2690

3137 1941 1731 1194 1007 1210 1025

3142 1274 936 1667 2119 2802 2844

3145 3875 2426 2072 1260 1624 2469

3146 2725 1420 1032 887 1377 1998

3153 2179 1678 2678 2546 3515 5126

3154 2502 1869 2066 1362 1963 3478

3233 346 232 255 270 22 22

3346 203 235 213 241 511 386

3358 37 243 21 232 221 61

3437 210 174 192 172 297 219

3723 188 66 169 87 136 115

3813 3031 1687 2681 2825 3536 5933

3814 2731 1487 1630 1479 1876 3582

3816 1118 363 38 149 295 620

3817 582 217 13 226 175 236

3821 1379 693 954 1290 1556 2215

3822 3682 1684 2831 3204 3444 5178

3825 1596 662 415 605 750 1246

3826 930 343 96 370 367 410

3833 2679 1587 2001 1795 1997 3467

3834 1791 1124 1089 996 1285 2056

3842 885 661 1006 1022 1087 1882

3845 966 865 664 563 802 562

3846 995 862 1021 1009 1022 505

3848 879 943 690 764 855 647

3945 493 844 599 347 238 263

3947 437 836 1033 654 259 318
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Atlas year

square 2010 2011 2012 2013 2014 2015

3954 308 255 231 464 277 241

4016 128 238 225 253 513 517

4041 161 176 112 110 265 387

4042 113 72 103 189 341 527

4043 92 89 189 506 594 812

4054 128 169 491 420 841 517

4311 117 101 51 49 74 58

4348 570 443 501 471 403 586

4354 808 908 688 405 266 256

4415 371 795 930 709 610 248

4433 398 585 629 788 714 502

4451 1973 1308 1216 854 677 523

4537 0 0 0 0 11 0

4544 15 21 29 44 49 88

4558 1 28 1 0 0 0

4641 12 75 7 9 26 10

5028 13 3 0 1 0 2

5045 0 0 0 0 0 0

5124 70 39 72 127 154 120

5133 10 2 7 11 94 11

5141 2 17 2 0 5 0

5157 3 3 0 0 0 1

5252 13 8 35 67 82 110

5711 0 0 0 0 0 0

5723 41 27 3 7 0 0

5724 121 41 17 18 4 3

6042 15 15 8 7 11 18

6051 13 2 12 5 25 23

6053 1 8 1 0 15 3

6224 20 29 8 3 78 12

6233 2 55 5 6 79 39


