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Abstract 

For the conservation of biodiversity in general and the monitoring of meadow birds in 

particular, actual grassland-use intensity maps are highly desirable. A method to map and 

assess grassland management intensity was developed using C5.0 decision tree 

classification on Sentinel-2 satellite data. Monoculture and extensively managed 

grasslands on both peat and clay soils could be accurately detected at parcel level in 

Friesland, the Netherlands. Field-survey-based validation returned an overall classification 

accuracy of 84.3% (KHAT 0.65). The Sentinel-2 Red-Edge Position vegetation index was 

found to be a good indicator of fertilization. Availability of springtime imagery, preferably 

acquired in April before the first mowing date, is essential for accurate classification. The 

spectral responses of grassland types on peat and clay soils differ significantly. Hence, 

successful classification requires training data for both soil types. The resulting grassland 

management map was used to assess the distribution of meadow bird nests. Redshank 

(79%) and godwit (77%) in particular choose to breed on extensive parcels. With the 

increasing availability of satellite imagery, remote sensing techniques can be used to 

monitor agri-environmental measures (at parcel and landscape scale) that impact the 

conservation of grassland biodiversity.  
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1 Introduction 

Actual grassland-use intensity maps are highly desirable for the study and conservation of 
biodiversity and the monitoring of meadow birds (Howison, Piersma, Kentie, Hooijmeijer & 
Olff, 2018). Agricultural intensification of grassland use is one of the main causes of meadow 
bird decline. This has been evidenced for example in Friesland, the Netherlands (Groen et 
al., 2012; Kentie, Hooijmeijer, Trimbos, Groen & Piersma, 2013). Extensively managed 
herb-rich grassland forms the traditional meadow bird habitat, but it has become rare (Figure 
1). By extensive management is meant: no application of artificial fertilizer or liquid manure, 
limited grazing, first mowing date after 15 June, and preservation of high groundwater levels. 
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Nowadays, most farmers have moved to intensively managed ryegrass (Lolium perenne) 
monocultures. In these grasslands, juvenile meadow birds have little chance to survive due to 
frequent mowing (ca. once a month from April to October) and lack of high-quality food 
(Kentie et al., 2013).  

Ground-based methods for grassland surveying and monitoring are time-consuming and 
expensive due to the large surface areas and spatio-temporal variability of grassland-use 
intensity. This is why Remote Sensing (RS) techniques have been used increasingly in 
grassland research (Ali, Cawkwell, Dwyer, Barrett & Green, 2016). However, research that 
uses RS for assessing agricultural grassland management intensity at parcel level is still rare 
(Asam, Klein & Dech, 2015; Courault et al., 2010; Dussaux, Vertès, Corpetti, Corgne & 
Hubert-Moy, 2014; Franke, Keuck & Siegert, 2012; Sibanda, Mutanga & Rouget, 2017). 
Current availability of imagery with high spatio-temporal resolution offers new perspectives 
for this type of research (Asam et al., 2015). 

 

Figure 1: Differences between extensive and monoculture grassland on clay and peat soils (April 

2017). 

A: Monoculture grassland, clay soil area (17 April 2017); 

B: Extensive grassland, clay soil area (17 April 2017); 

C: Monoculture grassland, peat soil area (22 April 2017);  

D: Extensive grassland, peat soil area (22 April 2017). 
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Because grasslands display a very similar spectral signature, information from specific 
wavelengths is required to discriminate between different grassland types (Ali et al., 2016). 
Several satellites, e.g. RapidEye, WorldView-3 and Sentinel-2, now collect data in the red-
edge wavelengths. Healthy green vegetation has a characteristic spectral response, with a 
steep increase between maximum absorption of red light and maximum reflectance of near 
infrared light (Figure 2). The steepest point of this 'red-edge' is called the red-edge position 
(REP). The REP varies depending on vegetation type and is related to vegetation chlorophyll 
content (Clevers & Gitelson, 2013; Frampton, Dash, Watmough & Milton, 2013). It is also 
suitable for estimating leaf nitrogen content (Clevers & Gitelson, 2013; Ramoelo, Cho, 
Mathieu & Skidmore, 2015). Using red-edge bands in vegetation indices reduces the 
saturation effect which is often found in the NDVI (Normalized Difference Vegetation 
Index), because in the red-edge region, absorption by chlorophyll is lower than in the red 
visible light region (Clevers & Gitelson, 2013). An increase in leaf chlorophyll content causes 
a shift in the REP towards longer wavelengths (Delegido et al., 2013). This shift has also 
been found for grasslands treated with fertilizer (Sibanda, Mutanga & Rouget, 2015; Sibanda 
et al., 2017). REP values near 700 nm have been associated with low leaf chlorophyll 
concentration, whilst values near 725 nm point to high leaf chlorophyll concentration (Cho 
& Skidmore, 2006). Several studies have shown that the inclusion of data from the red-edge 
part of the spectrum can improve grassland-use classification results (Franke et al., 2012; 
Schuster, Förster & Kleinschmit, 2012; Sibanda et al., 2017). This paper (i) explores the 
potential of Sentinel-2 satellite data for detecting grassland management intensity at parcel 
level in a study area in Friesland, the Netherlands; (ii) compares classification parameter 
values for peat and clay soils; (iii) compares grassland management intensity to the 
distribution of meadow bird nest sites. 

  

Figure 2: Spectral response curves of dry grass and lawn grass vs. distribution of Sentinel-2 spectral 

bands (modified from USGS 2017); details on S-2 bands in: https://earth.esa.int/web/sentinel/technical-

guides/sentinel-2-msi/performance) 
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2 Methods 

The methods build on the research of Franke et al. (2012), who successfully mapped 
grassland management intensity at parcel level in southern Germany. They used RapidEye 
imagery for five observation dates and based their classification on See5 derived rulesets, 
using thresholds for the Normalized Red-Edge Vegetation Index (NREVI), NDVI, and their 
Mean Absolute Spectral Dynamic (MASD) indicator for spectral variability, which were 
implemented in eCognition. The current research uses only freely available data and open-
source tools. Analyses are based on Sentinel-2 data for nine observation dates. The Sentinel-
2 Red-Edge Position (S2REP) replaces the NREVI (Figure 3). Differences in parameter 
values for peat and clay soils are also assessed. 

 

Figure 3: Method workflow 

Study area and field surveys 

The study area comprises South-Central Friesland (1610 km2), in the north of the 
Netherlands (Figure 4). This area has a history of meadow bird research (Groen et al., 2012; 
Kentie et al., 2013). Land cover is dominated by grassland, used for sheep and dairy cattle 
farming. Elevation varies between -3.0 m to 12.7 m AMSL. To study the influence of soil 
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type on spectral reflectance values, two field survey areas were chosen: the municipality of 
Littenseradiel (132 km2), representing an area with clay soils, and Grouw (102 km2), an area 
dominated by peat soils. Littenseradiel includes the meadow bird reserves Skrok, Skrins and 
Lionserpolder. The Grouw area includes part of the De Alde Feanen National Park, a Natura 
2000 site with several important meadow bird areas, e.g. De Burd and Wyldlannen. 
In October 2016, sample areas representing monoculture grassland were selected through 
field survey. Bird reserves, derived from maps of nature management plans (Provincie 
Fryslân, 2017), were used as sample areas for extensive grassland. Parcel geometry for 
grasslands was extracted from the 2016 cropland registration dataset (Nationaal georegister, 
2017). The field survey was repeated for the whole of Littenseradiel in the second half of 
April 2017, when the visible differences in grassland management intensity are most 
pronounced, thanks to the presence of flowering herbs. A vector map showing the grassland 
type for each parcel was created and used for accuracy assessment.  

 

Figure 4: True colour composite (B4-B3-B2) of Sentinel-2 image of the study area (21 April 2016) 

Data and pre-processing 

The Sentinel-2 mission, part of the European Copernicus programme, makes provision for 
two identical polar-orbiting satellites in sun-synchronous orbit, phased opposite to each 
other at an altitude of 786 km. Their revisit time is five days at the equator. Sentinel-2A was 
launched on 23 June 2015 and Sentinel-2B on 7 March 2017 (ESA, 2017a). Data is collected 
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for 13 spectral bands at 10, 20 or 60 m spatial resolution (Figure 2). For the study area, nine 
Sentinel-2A datasets with little to no cloud cover were available for the 2016 growing season 
(Table 1). These Level-1C datasets, consisting of radiometrically corrected, orthorectified 
products in the UTM-WGS84 projected coordinate system, were downloaded using ESA’s 
Scientific Data Hub (ESA, 2017b). Atmospherically corrected Level-2A bottom-of-
atmosphere reflectance products were generated using the Sen2Cor (v2.3.0) Level-2A 
processor implemented in the Sentinel Application Platform (SNAP 5.0), at 10 m resolution 
(Mueller-Wilm, 2016). Smoothing of NDVI and S2REP time series, for example by using 
filtering methods, was not applied because of the risk of losing small fluctuations which 
might represent grazing or mowing (Halabuk, Mojses, Halabuk & David, 2015).  

Table 1: Overview of Sentinel-2 datasets used for the 2016 growing season. Values for solar zenith and 

viewing geometry (Mean view zenith angle and Sun zenith angle) were taken from the pixel that 

represents Itens, Littenseradiel 

Granules 

 

Acquisiti
on Date 
+ Time 

Mean 
view 
zenith 
angle  

 

Sun 
zenith 
angle  

Cloud
y 
pixel 
% 

S2A_OPER_MSI_L1C_TL_SGS__20160
312T181201_A003766_T31UFU_N02.01 

12 March  
10:50:37 

3.48° 57.20° 

 

0.0104 

S2A_OPER_MSI_L1C_TL_SGS__20160
401T163301_A004052_T31UFU_N02.01 

1 April  
10:50:24 

3.46° 49.21° 

 

22.647
5 

S2A_OPER_MSI_L1C_TL_SGS__20160
411T150737_A004195_T31UFU_N02.01 

11 April  
10:50:25 

3.47° 45.38° 

 

0 

S2A_OPER_MSI_L1C_TL_MPS__20160
421T130055_A004338_T31UFU_N02.01 

21 April  
10:50:29 

3.51° 41.81° 

 

0.8841 

S2A_OPER_MSI_L1C_TL_SGS__20160
508T163213_A004581_T31UFU_N02.02 

8 May  
10:40:27 

9.77° 37.05° 

 

0.0032 

S2A_OPER_MSI_L1C_TL_SGS__20160
607T162830_A005010_T31UFU_N02.02 

7 June  
10:40:26 

9.80° 31.78° 

 

10.311
9 

S2A_OPER_MSI_L1C_TL_MTI__20160
727T121350_A005625_T31UFU_N02.04 

20 July  
10:55:47 

3.54° 33.87° 

 

0 

S2A_OPER_MSI_L1C_TL_SGS__20160
908T161324_A006340_T31UFU_N02.04 

8 Sept. 
10:54:16 

3.56° 48.36° 

 

0 

S2A_OPER_MSI_L1C_TL_SGS__20160
925T161027_A006583_T31UFU_N02.04 

25 Sept. 
10:41:15 

9.88° 54.98° 

 

0 

Mapping 

Sample points 

Using QGIS v2.18.1, 400 random sample points were created within the polygons of 
extensive and monoculture grassland for both soil types. All 1,600 sample points were 
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imported into SNAP and used as masks to extract reflectance and classification parameter 
values for the whole time series. Extracted values were analysed in Microsoft Excel with 
XLSTAT (Addinsoft, 2015). Sample points affected by cirrus clouds were excluded; this was 
necessary only for the dataset of 7 June. The distributions of reflectance and parameter 
values were tested for normality using the Shapiro-Wilk test. Mean parameter values for 
monoculture and extensive grasslands on peat and clay soils and values for peat vs. clay soils 
were compared using the Mann-Whitney U non-parametric test. Parameter data for 100 
random sample points for each grassland category, in total 400 sample points, were used as 
training data input for decision tree generation using the demo version of See5 v2.10 
(Rulequest Research, 2017). This demo allows a maximum of 400 sample points as training 

data. The remaining 1,200 sample points were used as test data to evaluate the See5 classifier.  

Classification parameters 

NDVI 
The Normalized Difference Vegetation Index (Rouse, 1974) was calculated with the NDVI 
processor in SNAP 5.0, using bands 4 (ρRED) and 8 (ρNIR), as advised by ESA in the Sentinel-
2 technical guide (ESA, 2017c). The NDVI has been used for vegetation monitoring and 
assessment in countless studies (Frampton et al., 2013). In the current research, change in the 
NDVI is also used to detect mowing. 

S2REP 
The Sentinel-2 Red-edge Position (S2REP) can be used as an indicator for chlorophyll 
content and may also be a useful indicator of fertilization (Frampton et al., 2013; Sibanda et 
al., 2015; Sibanda et al., 2017). Since it is based on the red-edge bands, the S2REP may allow 
discrimination between the different grassland categories. It was calculated using the S2REP 
processor in SNAP 5.0 according to the formula: 705 + 35 * ((((ρB7 + B4)/2) - ρB5) / (ρB6 - 
ρB5)).To establish the REP, a linear interpolation procedure is applied between 705 nm (B5) 
and 740 nm (B6), hence the constants 705 and 35 (Cho & Skidmore, 2006). The S2REP 
range for vegetated areas lies between 690 and 740 nm (ESA Step Forum, 2017). 

MASD 
The Mean Absolute Spectral Dynamic (MASD) indicates spectral variability for each pixel 
over two or more observation dates. It represents vegetation dynamics through time and is 
an indicator for grassland-use intensity (Franke et al., 2012). It should be noted that MASD 
only describes the magnitude of the spectral response and does not give any information on 
the spectral shape. The MASD formula used was: 

 

where m is the number of observation dates, t is the observation date, n is the number of 
spectral bands, b is the spectral band, and ρ is the pixel reflectance (Franke et al., 2012). 
MASD was calculated using Raster Band maths in SNAP 5.0. Images for 12 March and 7 
June were excluded because of the presence of clouds. MASD4_spring is based on four 
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images for 1 April, 11 April, 21 April and 8 May (m = 4), indicating spectral variability before 
the first mowing date of extensive grasslands. MASD7_total (April–September) also includes 
20 July, 8 September and 25 September (m = 7). MASD between subsequent observation 
dates was also calculated. Reflectance for Sentinel-2 bands 2, 3, 4, 5, 6, 7, 8, 8A, 11 and 12 
was used for the MASD calculation (n = 10). 

See5 data-mining software 

See5 data-mining software can be used to reveal data patterns that allow classification into 
categories using the C5.0 univariate decision tree (DT) machine learning algorithm (Quinlan, 
2014; Rulequest Research, 2017). DTs are computationally fast and analysts can easily 
interpret their outcomes; furthermore, they do not require statistically normal distributed 
data (Pal & Mather, 2003). The measure used to partition data into different classes is the 
normalized information gain (difference in entropy) (Santini, 2015). At each node of the DT, 
the algorithm aims to decrease the dataset’s entropy by creating more homogeneous subsets 
(Santini, 2015). The procedure is recursively repeated, creating new branches on the tree, 
until all data is classified. If the training data contains noise, overfitting may occur. To avoid 
this, DTs may be pruned, reducing the number of branches (Pal & Mather, 2003; Kotsiantis, 
2007). See5 was selected because Franke et al. (2012) achieved good results using this 
method. Moreover, since values for reflectance, NDVI and S2REP were not normally 
distributed, maximum likelihood classification could not be used. The demo version of See5 
v2.10 was used to establish NDVI, S2REP and MASD thresholds that allow the 
classification of monoculture and extensive grasslands on clay and peat soils. The DT created 
was used to derive decision rules. These rulesets were implemented in QGIS to create the 
final maps using the ‘import rules from text file’ function in the band calculations menu of 
the Semi-Automatic Classification Plugin v5.2.4 (Congedo, 2016). See5 also shows which 
attributes dominate the classification. The importance of specific attributes for classification 
was tested by removing values for 21 April and repeating the See5 analysis. Two related 
classifications were evaluated: 

1) Statistical rule-based classification 
This method uses See5 statistical analysis of parameter values for 26 attributes: NDVI and 
S2REP values for all nine observation dates, MASD4_spring, MASD7_total, and the MASD 
between seven observation dates.  
 
2) Contextual rule-based classification 
This classification applies contextual knowledge of seasonal aspects of agricultural grassland 
management practices (Franke et al., 2012). Specifically, knowledge of first mowing dates is 
used to avoid misclassification of monoculture fields that are mown before 21 April. It also 
aims to test whether good classification results can be achieved by implementing simplified 
decision rules when the classifier is based only on three attributes: S2REP, NDVI for 21 
April, and MASD4_spring values. Mowing causes a strong, sudden decrease in biomass and 
crop height and reduces NDVI values (Courault et al., 2010; Dussaux et al., 2014; Lips, 
2011). Under the right weather conditions, vegetation recovers within ca. 15 days (Courault 
et al., 2010). If the gap between two observation dates is longer than 10–15 days, mowing 
may not be detected. Based on change in NDVI between 21 April and 8 May, a mowing 
threshold of -0.1 was established and added to the decision rules for mapping in QGIS.  



Bekkema & Eleveld 

202 
 

3 Results and discussion 

Spectral separability 

In springtime, for all spectral bands on both clay and peat soils, the Mann Whitney U test 
showed that mean spectral response for extensive grasslands differs significantly from 
monoculture grasslands (p < 0.0001, alpha 0.05 for 21 April) (Figure 5). After the first 
mowing event, spectral response patterns show more overlap; differences between 
monoculture and extensive grassland are no longer significant for several spectral bands. 
Local soil type strongly influences spectral response. When comparing clay vs. peat soils, 
mean reflectance values for extensive grassland and monoculture grasslands are significantly 
different in spring (p < 0.0001, alpha 0.05 for 21 April). In a study area with mixed soils, 
training data for both soil types is required to avoid misclassification. Coincident spectral 
plots were created to assess whether the range of values shows overlap. After the first 

mowing date, boxes show strong overlap.  

 

Figure 5: Spectral reflectance curves for 21 April and 25 September, based on mean reflectance 

values for extensive and monoculture grassland on clay and peat soils, and coincident spectral plots 

for clay soils 

Vegetation Index time series analysis 

Seasonal grass production curves typically display two peaks. Grass growth starts in March, 
speeds up in April and reaches its highest peak in May. In June and July, growth slows down 
due to slower re-growth after the first cut, but this is also related to the flowering season for 
grass vegetation. The second peak is reached in August/September (Visscher, 2010). The 
seasonal pattern of the S2REP and NDVI time series is comparable to the grassland 
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production curve, showing a peak in May, lower values in July, and a second peak in 
September (Figure 6).  

The NDVI time series for extensive grasslands on peat soils shows a delayed onset of grass 
growth, with a peak in June, whilst monoculture grasslands reach their peak on 21 April. 
Delayed onset of grass growth on peat is caused by lower soil temperatures due to high 
groundwater levels in spring (Gollenbeek & Hoving, 2016). Moreover, due to wet soil 
conditions, manuring cannot start as early as on clay soils. 

In spring, NDVI for monoculture grassland displays a narrow range compared to extensive 
grassland, reflecting the homogeneous character of ryegrass monocultures in contrast to the 
heterogeneous extensive grasslands that include various types of grasses and herbs. From 
May onwards, monoculture grassland on clay soils shows more variation in NDVI due to 
mowing; first cuts were taken between 6 and 12 May. For monoculture on peat, NDVI 
variation increases in June; first cuts were taken between 8 May and 7 June. In July, NDVI of 
extensive grassland drops strongly for both clay and peat soils, since after 15 June mowing is 
allowed in bird reserves. The NDVI drop in July may also be related to slower grass growth 
during the flowering season. 

The S2REP time series follows a similar pattern, but compared to the NDVI time series, less 
overlap occurs between extensive and monoculture grasslands. For monoculture on clay 
soils, the highest mean value is 727 nm, compared to 726 nm for peat soils; 722 nm for 
extensive grassland on clay soils, and 723 nm for peat soils. The S2REP for extensive 
grasslands on clay and peat soils shows significant overlap, although the S2REP range is 
wider for peat soils. High S2REP values for monoculture grasslands are probably related to 
high amounts of chlorophyll and nitrogen in the leaves, stimulated by the application of 
liquid manure.  

Classification 

After See5 analysis of 26 attributes, the DT for statistical classification uses only five 
attributes for four observation dates (Table 2). S2REP values for 21 April are the most 
important for classification (100% attribute usage), followed by S2REP values for 8 
September (51%), and NDVI values for 21 April (50%). See5 evaluation on test data (= the 
sample points not used for training) reveals an error of 4.6%. The higher error percentage in 
test data compared to training data may be due to overfitting to noise in the training data (Pal 
& Mather, 2003). Despite careful selection of sample areas, it is still possible that some 
training samples may have been allocated to the wrong class. After See5 analysis of three 
attributes, the DT for contextual classification uses two attributes. Again, S2REP for 21 
April is the most important attribute used for classification (100%), followed by NDVI for 
21 April (50%), whilst MASD4_spring is not used (Table 2). The accuracy for the test data is 
similar to that of the statistical classification. 
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Figure 6: NDVI and S2REP boxplot time series for extensive and monoculture grassland on clay and 

peat soils.  

The S2REP and NDVI for 21 April are dominant attributes that allow fast splitting into 
either monoculture or extensive grassland. See5 analysis was repeated without S2REP and 
NDVI for 21 April to test the importance of other attributes. If the dominant attributes are 
discarded, See5 needs to consider more attributes to achieve the final classification and 
returns a more complex DT in which S2REP for 11 April is the most important attribute 
(100%), followed by MASD4_spring (55%) (which still includes 21 April), S2REP for 8 May 
(45%), and S2REP for 12 March (42%). This illustrates the importance of the S2REP for 
classification and confirms that April is the optimal month to discriminate between extensive 
and monoculture grassland. Since spring temperatures throughout the Netherlands show 
little variation, this will hold true for the whole country. This is consistent with the findings 
of Nitze, Barret & Cawkwell (2015), who used DTs for grassland classification in Ireland.  
When comparing classification results with the ground truth map, overall accuracy 
(Congalton, 1991) for the contextual classification is slightly higher (84.3%) than for the 
statistical classification (82.5%). Cohen’s kappa coefficient (KHAT) (Cohen, 1960) is also 
higher for the contextual classification: 0.65 (= substantial agreement) compared to 0.59 (= 
moderate agreement). This is comparable to the results of Franke et al. (2012). Lower overall 
accuracy for the statistical classification is mainly due to misclassification of monoculture 
fields that were mown before 21 April. If the mowing threshold is added to the statistical 
classification, its overall accuracy increases to 83.3% with a KHAT of 0.60.  
Monoculture grasslands may also be misclassified as extensive grasslands due to recent re-
seeding, slower grass growth in fields that have been used for maize crops in previous years, 
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fields that are intensively grazed, and failure to detect mowing if gaps in the time series are 
too wide. Contrary to the findings of Franke et al. (2012), the MASD attributes did not 
contribute much to the classifications. The reason for this is probably that the 21 April image 
is dominant, since spectral separability was extremely good on this date. If no such dominant 
image is available, MASD may be more useful. But, in all cases, the S2REP outperformed the 
MASD. Provided that adequate springtime imagery is available, accurate grassland 
management classification does not necessarily require data for many observation dates. The 
statistical method uses four scenes and the contextual method two. The contextual 
classification requires data from two consecutive observation dates, preferably at an interval 
of 10–15 days, to be able to detect mowing of intensively managed grasslands. Mowing can 
be detected at parcel level (Appendix A).   

Table 2: Attribute usage and comparison of classification accuracy for statistical and contextual 

classification 

 Statistical classification Contextual 
classification 

Total nr. of attributes used as 
input in See5 

26 3 

Final attribute usage (See5) 100%  S2REP21April 
 51%  S2REP8Sep 
 50%  NDVI21April 
 7%  S2REP25Sep 
 4%  MASD21Apr8May 

100%  S2REP21April 
50%  NDVI21April 
0% MASD4Spring 

Accuracy on training data 
(See5) 
(400 sample points) 

99.2 % 96.7 % 

Accuracy on test data (See5) 
(1200 sample points) 

95.4 % 95.4 % 

Overall accuracy (final map) 
compared to ground truth 
vector map 

82.5 % 84.3 % 

KHAT (final map) 0.59 0.65 

Nr. of scenes used (final map) 4 2 

Contextual classification for South-Central Friesland study area 

The contextual classification was applied to the whole study area and validated through an 
overlay of (meadow) bird areas that are part of the National Nature Network, as well as of 
locations of organic/bird-friendly farmers, because here one expects to find extensive 
grassland (Figure 7). 40.3% of the grassland is classified as extensive and 59.7% as 
monoculture. Indeed, nearly all grassland in nature areas is classified as extensive; 
concentrations of extensive grassland are also found near organic/bird-friendly farms. Peat 
soils contain relatively more extensive grassland than clay soils. The reason for this may be 
that these soils are less suitable for intensive management due to higher groundwater levels. 
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The classification method could probably be successfully applied for other grassland areas in 
the Netherlands, because most meadow bird grasslands lie on clay or peat soils. However, no 
thorough accuracy assessment was performed for the peat soil area due to lack of time. 
Therefore, further validation of the model is required. 

 

Figure 7: Grassland classification for study area compared to National Nature Network (EHS) and 

organic/bird-friendly farms 
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Grassland management compared to distribution of godwit nests 

To illustrate its potential use for meadow bird conservation, the contextual classification map 
was compared to the distribution of registered nests of lapwing, redshank, godwit and 
oystercatcher in Littenseradiel (Figure 8 & Appendix B). All species, especially godwit and 
redshank, prefer extensive grassland as nesting sites (Table 3). Lapwings also favour bare 
lands/croplands over monoculture grassland. Nevertheless, 20% of the combined species 
breed on monoculture grasslands. Here, protection of nests and chicks remains essential. 

 

Figure 8: Contextual classification compared to distribution of registered Black-tailed Godwit nest sites 

for Littenseradiel 2016. Total numbers are given for Skrok and Skrins meadow bird reserves (nest 

distribution data from Bond Friese Vogel Wachten, 2016; nr. of territories for Skrok and Skrins from De 

Boer & De Winter, 2016) 
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Table 3: Grassland type compared to distribution of nests in Littenseradiel (2016) for four meadow bird 

species 

 Total 
nr. of 
nests  
for 
2016 

Extensive 
grassland  
(33.6 km2) 

Monoculture 
grassland (75.7 
km2) 

Other/Arable land 
(2.1 km2) 

Nr. 
of 
nests 

% Nests
/km2 

Nr. 
of 
nes
ts 

% Nests/
km2 

Nr. 
of 
nests 

% Nests
/km2 

Black-
tailed 
Godwit 

1,150 891 77 26 237 21 3 22 2 10 

Redshank 
 

554 435 79 13 115 21 1 4 0.7 2 

Northern 
Lapwing 

1,004 607 60 18 141 14 2 256 26 122 

Oystercatc
her 
 

517 293 57 9 161 31 2 63 12 30 

Combined 
species 

3,225 2,226 69 66 654 20 9 345 11 164 

4 Conclusion 

Sentinel-2 has great potential for detecting grassland management intensity at parcel level. 
The S2REP vegetation index in particular is an important classification parameter, serving as 
an indicator of fertilization. Availability of springtime imagery, preferably acquired in the 
second half of April, before the first mowing date, is essential for accurate classification. The 
current method incorporates expert knowledge on local management, specifically with regard 
to mowing. If the method is to be used in a (semi)-automated operational process and 
applied in study areas for which no knowledge of mowing is available, it is essential to have a 
reliable mowing model. With the additional availability of Sentinel-2B data, temporal 
resolution is increased to five days, increasing the chance of acquisition of cloud-free images. 
Detection of mowing may be improved by using Sentinel-1 Synthetic Aperture Radar data 
(Howison et al., 2018; Tamm, Zalite, Voormansik & Talgre, 2016). 
Local soil type strongly influences the spectral response of grassland. In a study area with 
mixed soils, training data for all soil types is required to avoid misclassification. The validity 
of the model needs further testing, since classification thresholds may vary from year to year, 
depending on weather conditions in spring. Similarly, it might be worthwhile to test the 
method in other regions. In general, we conclude that freely available remote sensing data 
and techniques can be used to monitor agri-environmental measures at local, parcel and 
landscape scale, which can hopefully contribute to the conservation of grassland biodiversity. 
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Appendix A:  Mowing map for Littenseradiel 
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Appendix B: 
Distribution of 2016 meadow-bird territories/nests compared to grassland mana- 
gement  

 


